目标跟踪“Staple: Complementary Learners for Real-Time Tracking”

原创 2016年08月31日 16:07:23

综合了局部特征HOG和全局特征颜色直方图用于目标跟踪,速度达到80fps。

相关工作
Correlation Filters作为衡量信号相似度的方法被用于跟踪,主要用于rigid模板,关于CF的介绍可见:
http://www.cnblogs.com/hanhuili/p/4266990.html

CF从圆形位移中学习,而颜色直方图对圆形位移不变,要解决变形问题,就要学习可变模板。

方法描述
使用tracking-by-detection流程,目标在t帧中的位置由图像xt中的具有最大得分的矩形框p:
pt=argmaxpStf(T(xt,p);θt1) (1)
模型参数θ通过最小化损失函数求得:
θt=argminθQ{L(θ;Xt)+λR(θ)} (2)
给定第一帧中目标的位置,打分函数f和损失函数L的选取比较关键。作者给出了一个组合模板和直方图得分的打分函数,即:
f(x)=γtmplftmpl(x)+γhistfhist(x) (3)
模板得分K通道特征图像的线性函数,即:
ftmpl(x;h)=ΣuTh[u]Tϕx[u] (4)
直方图得分由M通道的图像计算得到:
fhist(x;β)=g(ψx;β) (5)
为了加速计算,重叠窗口应该共享特征计算,直方图得分可以用积分图像计算,整个模型的参数为(h,β),设训练损失为单个图像损失的加权线性组合,即:
L(θ,XT)=ΣTt=1wtl(xt,pt,θ) (8)
每个图像的损失为:
l(x,p,θ)=d(p,argmaxqSf(T(x,q);θ)) (9)

通过解决两个独立的rigid回归问题学习模型:
这里写图片描述

下图为学习过程的可视化表示:
这里写图片描述

最小平方优化
L(θ;X)f(x;θ)的凸二次函数,且f(x;θ)对于θ是线性的,则存在矩阵At和向量bt使得:
这里写图片描述

学习模板得分
在最小平方Correlation Filter情况下,每个图像的损失为:
ltmpl(x,p,)=||ΣKk=1hkϕky||2
h为输入图像,ϕ为滤波模板?y为理想响应(通常为高斯分布的函数)。使用x^表示离散傅里叶变换,归一化的目标函数为:
h^[u]=(s^[u]+λI)1r^[u]

学习直方图得分
每个图像的损失为:
lhist(x,p,β)=Σ(q,y)W(βT[ΣuHψT(x,q)[u]]y)2
使用的特征RGB颜色,或者LBP,直方图得分可以使用平均投票,这里使用每个图像的目标函数对每个特征像素进行线性回归,即:
lhist(x,p,β)=1OΣuO(βTψ[u]1)2+1BΣuB(βTψ[u])2

实验结果
在VOT14上的实验结果为:
这里写图片描述

相关文章推荐

算法学习 -- Staple: Complementary Learners for Real-Time Tracking

Abstract一个结合梯度特征HOG及颜色特征的实时跟踪算法,速度达到80FPS,即每秒80帧图像。IntroductionStaple: Sum of Template And Pixel-wis...

物体跟踪-CVPR16-tracking[上]

在公司做了一段时间的跟踪,最近CVPR大会也过了一段时间了,这次将CVPR2016跟踪的文章邵文做一次总结,主要是对paper的方法,创新,改进等方面进行介绍和总结。具体的实现细节不进行总结, 今年来...

目标跟踪算法--Staple: Complementary Learners for Real-Time Tracking

文章下载链接:文章下载链接 代码下载链接:Staple代码 ———————————————————————————————————————————— 今天要讲的这篇文章也是基于相关滤波器(不懂相...

目标跟踪系列二:Staple: Complementary Learners for Real-Time Tracking(2016CVPR)

文章链接:http://arxiv.org/pdf/1512.01355 1.      考虑了两种方法的结合。Learning the template score(相关滤波)+ Learning...

近几年目标跟踪算法发展综述(下)

2016年VOT2016【Index】今年算法比赛结果没什么特别大的意外,CNN和结合深度特征的算法都排名靠前,没毛病。今年你知道主办方干了一件大好事,就是把所能搜集到的算法代码都给公布了,良心啊~~...

基于Deep Learning的跟踪算法总结(三)

本文是博主对最近看的相关跟踪算法的总结,其中的算法有一些不是基于深度学习的。另外本文只是对各篇论文的核心亮点简单描述,同时加上博主自己的一些看法。本文仅作为学习笔记,供学习交流,如果有什么错误或疑问,...

物体跟踪-CVPR16-tracking[上]

http://blog.csdn.net/ben_ben_niao/article/details/52072659 做了一段时间的跟踪,最近CVPR大会也过了一段时间了,这次将CVPR2016...

PWP(Visual Tracking Tracking using Pixel-Wise Posteriors)跟踪算法研究

早就看了 《Visual Tracking Tracking using Pixel-Wise Posteriors》这篇文章。当时被其挂出来的跟踪效果惊呆了,不过也被满篇的公式吓住了,所以没有深入研...

correlation filter 目标跟踪论文集

correlation filter 最近几年在目标跟踪中取得不错成绩,得到较为广泛地关注。为研究correlation filter在目标跟踪中的应用,将相应的主要论文进行汇总,以便后续学习总结和分...
  • TJXUNwu
  • TJXUNwu
  • 2016年10月15日 15:52
  • 2564

目标跟踪算法2017

强力推荐@Qiang Wang维护的资源benchmark_results:大量顶级方法在OTB库上的性能对比,各种论文代码应有尽有,大神自己C++实现并开源的CSK, KCF和DAT. f...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:目标跟踪“Staple: Complementary Learners for Real-Time Tracking”
举报原因:
原因补充:

(最多只允许输入30个字)