HDU_1533 Going Home(最优匹配) 解题报告

原创 2012年08月16日 00:26:57

转载请注明出自cxb:http://blog.csdn.net/cxb569262726

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533


说实话,这个题目刚开始还真看不出是完备匹配下的最大权匹配(当然,这个也可以用网络流做。(应该是添加源点、汇点,源点到每个m的距离取m到所有H中最小的那个(用一个大数减掉后就是最大的)汇点到每个H的距离类似,然后求最大流) 有空再试着做一下吧,空说无益)。 我是在图论500题里看到的,在网络流基础题里面。一开始想不出这个怎么流! 后面网上查这个是二分图最优匹配。于是昨天花几个小时看了相关资料,写了个比这题更水的 HDU2255。 今天写这题的时候明显轻松了。而且还想到用网络流的做法。发现网络流和二分匹配还是有联系的。


下面直接贴代码吧,看不懂的可以先看http://blog.csdn.net/cxb569262726/article/details/7871313


#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cstdlib>
#include<climits>
#define MAXN 105
using namespace std;

int n,m,numm,numh;
int map[MAXN][MAXN],lx[MAXN],ly[MAXN],vx[MAXN],vy[MAXN],matchy_x[MAXN];
char s[MAXN][MAXN];
int abs(int a){return a<0?-a:a;}

bool hungary(int u)
{
    int i;
    vx[u]=1;
    for(i=0;i<numm;i++)
    {
        if(vy[i] || map[u][i]!=lx[u]+ly[i]) continue;
        vy[i]=1;
        if(matchy_x[i]==-1 || hungary(matchy_x[i]))
        {
            matchy_x[i]=u;
            return  1;
        }
    }
    return 0;
}

void EK_match()
{
    int i,j;
    for(i=0;i<numm;i++)
    {
        int maxx=0;
        for(j=0;j<numh;j++)
             if(map[i][j]>maxx) maxx=map[i][j];
        lx[i]=maxx;
    }
    for(i=0;i<numm;i++)
    {
        while(1)
        {
            memset(vx,0,sizeof(vx));
            memset(vy,0,sizeof(vy));
            if(hungary(i))
                break;
            else
            {
                int temp=INT_MAX;
                for(j=0;j<numm;j++) if(vx[j])
                    for(int k=0;k<numh;k++) 
                        if(!vy[k] && temp>lx[j]+ly[k]-map[j][k])
                        temp=lx[j]+ly[k]-map[j][k];
                for(j=0;j<numm;j++)
                {
                    if(vx[j]) lx[j]-=temp;
                    if(vy[j]) ly[j]+=temp;
                }
            }
        }
    }
}

int main()
{
    int i,j;
    while(scanf("%d%d",&n,&m)!=EOF && (n||m))
    {
        for(i=0;i<n;i++) 
            scanf("%s",s[i]);
        numm=0;
        for(i=0;i<n;i++)
        {
            for(j=0;j<m;j++)
            {
                if(s[i][j]=='m')
                {
                    numh=0;
                    for(int k=0;k<n;k++)
                    {
                        for(int l=0;l<m;l++)
                        {
                            if(s[k][l]=='H')
                            map[numm][numh++]=300-(abs(i-k)+abs(j-l));
                        }
                    }
                    numm++;
                }
            }
        }
        memset(matchy_x,-1,sizeof(matchy_x));
        EK_match();
        int ans=0;
        for(i=0;i<numm;i++)
            ans+=(300-map[matchy_x[i]][i]);
        printf("%d\n",ans);
    }
    return 0;
}

 以下是slack数组优化的:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cstdlib>
#include<climits>
#define MAXN 105
using namespace std;

int n,m,numm,numh;
int map[MAXN][MAXN],lx[MAXN],ly[MAXN],vx[MAXN],vy[MAXN],matchy_x[MAXN],slack[MAXN];
char s[MAXN][MAXN];
int abs(int a){return a<0?-a:a;}
int min(int a,int b) {return a<b?a:b;}

bool hungary(int u)
{
	int i;
	vx[u]=1;
	for(i=0;i<numm;i++)
	{
		if(vy[i]) continue;
		if(map[u][i]==lx[u]+ly[i])
		{
		    vy[i]=1;
            if(matchy_x[i]==-1 || hungary(matchy_x[i]))
            {
                matchy_x[i]=u;
                return  1;
            }
		}
		else slack[i]=min(slack[i],lx[u]+ly[i]-map[u][i]);
	}
	return 0;
}

void EK_match()
{
	int i,j;
	for(i=0;i<numm;i++)
	{
		int maxx=0;
		for(j=0;j<numh;j++)
	 		if(map[i][j]>maxx) maxx=map[i][j];
		lx[i]=maxx;
	}
	for(i=0;i<numm;i++)
	{
	    memset(slack,127,sizeof(slack));
		while(1)
		{
			memset(vx,0,sizeof(vx));
			memset(vy,0,sizeof(vy));
			if(hungary(i))
				break;
			else
			{
				int temp=INT_MAX;
				for(j=0;j<numm;j++) if(!vy[j])
					if(temp>slack[j])   temp=slack[j];
				for(j=0;j<numm;j++)
				{
					if(vx[j]) lx[j]-=temp;
					if(vy[j]) ly[j]+=temp;
					else slack[j]-=temp;
				}
			}
		}
	}
}


int main()
{
	int i,j;
	while(scanf("%d%d",&n,&m)!=EOF && (n||m))
	{
		for(i=0;i<n;i++)
			scanf("%s",s[i]);
		numm=0;
		for(i=0;i<n;i++)
		{
			for(j=0;j<m;j++)
			{
				if(s[i][j]=='m')
				{
					numh=0;
					for(int k=0;k<n;k++)
					{
						for(int l=0;l<m;l++)
						{
							if(s[k][l]=='H')
							map[numm][numh++]=300-(abs(i-k)+abs(j-l));
						}
					}
					numm++;
				}
			}
		}
		memset(matchy_x,-1,sizeof(matchy_x));
		EK_match();
		int ans=0;
		for(i=0;i<numm;i++)
			ans+=(300-map[matchy_x[i]][i]);
		printf("%d\n",ans);
	}
	return 0;
}




 ok,睡觉吧。。明天比赛~~~  Good   luck!

hdu 1533 Going Home(最小权匹配KM)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533

hdu 1533 Going Home【KM匹配】

Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot...

hdu 1533 Going Home 【最小权的二分图匹配】

Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...

hdoj 2255 奔小康赚大钱 (KM算法 详解+模板) && HDU 1533 Going Home (二分图最小权匹配 KM模板)纯模板

传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子。  这可是一件大事,关系到人民的住房问题啊。村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没...

HDU-#1533 Going Home(二分图最佳完美匹配+KM)

题目大意: 解题思路: 题目来源:

HDU 1533Going Home(KM算法求二分图最小权匹配或者最小费用最大流)

On a grid map there are n little men and n houses. In each unit time, every little man can move one ...

POJ 2195 Going Home(二分图最优匹配)

题意:给定一个N*M的地图,地图上有若干个man和house,且man与house的数量一致。man每移动一格需花费$1(即单位费用=单位距离),一间house只能入住一个man。现在要求所有的man...

poj 2195 - Going Home 二分图最优匹配 ek

I - Going Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

poj 2195 Going Home(二分图最优匹配KM算法)

Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21805   Accepted: 1103...

POJ 2195 Going Home(二分图最优匹配)

POJ 2195 Going Home(二分图最优匹配) http://poj.org/problem?id=2195 题意:        给定一个N*M的地图,地图上有若干个man和house,且...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU_1533 Going Home(最优匹配) 解题报告
举报原因:
原因补充:

(最多只允许输入30个字)