最长上升子序列(LIS)长度的O(nlogn)算法

转载 2015年11月20日 23:08:06

hdu 1950 Bridging signals

http://acm.hdu.edu.cn/showproblem.php?pid=1950

===================================
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时。LIS问题可以优化为nlogn的算法。
定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素。
注意d中元素是单调递增的,下面要用到这个性质。
首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];
否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],则根据D的定义,我们需要更新长度为j的上升子序列的最末元素(使之为最小的)即 d[j] = a[i];
最终答案就是len
利用d的单调性,在查找j的时候可以二分查找,从而时间复杂度为nlogn。
==================================


最长上升子序列nlogn算法

在川大oj上遇到一道题无法用n^2过于是,各种纠结,最后习得nlogn的算法

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。n
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!

----------------------------------------------------------------------------------------------------------图解-----------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------

  1. /* 
  2.     HDU 1950 Bridging signals 
  3.             -----最长上升子序列nlogn算法 
  4. */  
  5.   
  6. #include<cstdio>  
  7. #include<cstring>  
  8. #define MAXN 40005  
  9.   
  10. int arr[MAXN],ans[MAXN],len;  
  11.   
  12. /*  
  13.     二分查找。 注意,这个二分查找是求下界的;  (什么是下界?详情见《算法入门经典》 P145) 
  14.     即返回 >= 所查找对象的第一个位置(想想为什么) 
  15.  
  16.     也可以用STL的lowe_bound二分查找求的下界 
  17. */  
  18.   
  19. int binary_search(int i){  
  20.     int left,right,mid;  
  21.     left=0,right=len;  
  22.     while(left<right){  
  23.         mid = left+(right-left)/2;  
  24.         if(ans[mid]>=arr[i]) right=mid;  
  25.         else left=mid+1;  
  26.     }  
  27.     return left;  
  28. }  
  29.   
  30. int main()  
  31. {  
  32.     freopen("input.txt","r",stdin);  
  33.     int T,p,i,j,k;  
  34.     scanf("%d",&T);  
  35.     while(T--){  
  36.         scanf("%d",&p);  
  37.         for(i=1; i<=p; ++i)  
  38.             scanf("%d",&arr[i]);  
  39.           
  40.         ans[1] = arr[1];  
  41.         len=1;  
  42.         for(i=2; i<=p; ++i){  
  43.             if(arr[i]>ans[len])  
  44.                 ans[++len]=arr[i];  
  45.             else{  
  46.                 int pos=binary_search(i);   // 如果用STL: pos=lower_bound(ans,ans+len,arr[i])-ans;   
  47.                 ans[pos] = arr[i];  
  48.         }  
  49.         printf("%d\n",len);  
  50.     }  
  51.     return 0;  
  52. }  

动态规划---最长上升子序列问题(O(nlogn),O(n^2))

LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列。很基础的题目,有两种算法,复杂度分别为O(n*logn)和O(n^2) 。 ****...
  • zhangyx_Xyz
  • zhangyx_Xyz
  • 2016年03月21日 20:32
  • 5525

动态规划:最长上升子序列(二分算法 nlogn)

解题心得: 1、在数据量比较大的时候n^2会明显超时,所以可以使用nlogn 的算法,此算法少了双重循环,用的lower_bound(二分法)。 2、lis中的数字并没有意义,仅仅是找到最小点li...
  • yopilipala
  • yopilipala
  • 2017年03月05日 16:13
  • 1346

最长公共子序列nlogn算法

求两个序列的最大公共子序列(LCS),普遍的动态规划算法时间复杂度为O(n^2),在两个序列的长度很长的时候运行时间过长。可以转化为最长上升子序列(LIS)来求,时间复杂度可以优化到nlogn。1.首...
  • zhijianshafeiyang
  • zhijianshafeiyang
  • 2015年04月14日 00:04
  • 1539

POJ2533 DP入门级题目-最大上升子序列(LIS)-O(n^2)与O(nlogn) (变形,POJ1631)

1) #include //入门DP问题,时间复杂度O(N^2) using namespace std; int main() { int a[1010];//输入元素 int d...
  • a272846945
  • a272846945
  • 2016年02月26日 21:34
  • 725

LIS(最长上升子序列)问题的三种求解方法以及一些例题

摘要本篇博客介绍了求LIS的三种方法,分别是O(n^2)的DP,O(nlogn)的二分+贪心法,以及O(nlogn)的树状数组优化的DP,后面给出了4道LIS的例题。LIS的定义一个数的序列bi,当b...
  • George__Yu
  • George__Yu
  • 2017年07月23日 11:34
  • 639

POJ 1631(最长上升子序列 nlogn).

~~~~ 由题意可知,因为左边是按1~n的顺序递增排列,要想得到不相交组合,左边后面的一定与相应右边后面的相连,如此一来, 就可以发现其实是一道最长上升子序列的题目,要注意的是N 题目链接:ht...
  • u013519226
  • u013519226
  • 2014年08月03日 21:06
  • 2513

动态规划专题小结:最长上升子序列(LIS)问题

(1)问题描述:给定n个整数A1,A2,A3...An。按照从左往右的顺序选择尽可能多的整数,组成一个上升子序列,其中相邻元素不能相等。 (2)解题思路:本题就是经典的最长上升子序列问题(Longes...
  • u014800748
  • u014800748
  • 2015年05月15日 21:55
  • 1170

LIS 最长上升子序列问题 nlgn时间打印其中一个序列

什么是最长上升子序列?从字面意思就很好理解,就是从一系列顺序输入中,寻找一个上升子序列,要求这个子序列的长度最长。对O(n^2)的解法(DP)这里不讨论了,主要说一下nlgn的解法。网上查了一下,都是...
  • u011863942
  • u011863942
  • 2015年06月13日 11:51
  • 381

最长公共子序列(nlogn)

最长公共子序列(LCS)最常见的算法是时间复杂度为O(n^2)的动态规划(DP)算法,但在James W. Hunt和Thomas G. Szymansky 的论文"A Fast Algorithm ...
  • wdq347
  • wdq347
  • 2013年05月31日 16:03
  • 7011

最长上升子序列的nlogn算法实现(用栈)

最长上升子序列的nlogn算法实现(用栈) 大体算法思想是设置一个栈,数据结构里严格意义上的栈是后进先出,但是这里的栈中间有稍微不一样的地方在于中间的元素也会被覆盖掉,算法过程是,第一个元素入栈,...
  • zuihoudebingwen
  • zuihoudebingwen
  • 2013年09月20日 12:48
  • 833
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最长上升子序列(LIS)长度的O(nlogn)算法
举报原因:
原因补充:

(最多只允许输入30个字)