NIPS | 谷歌AI大军来袭,看450多名员工如何横扫今年大会

转载 2017年12月04日 00:00:00

一年一度的AI盛会NIPS又开始了。


会前数周,就有大神预计,驱车参会的谷歌员工会挤满加州从山景城到长滩的道路,就像这样:


图片来源:杜克大学陈怡然教授微博


但是,NIPS 2017的火爆程度,明显超出了很多人的预期,Twitter网友Mariya拍到的NIPS签到注册的人群,已经从会议中心的一头排到了另一头,而她自己却排在这条长龙的最末端:



与此同时,另一位Twitter网友Dirk Van den Poel则开始抱怨这届大会的组织者明显没有大规模会议的组织经验,光是会前的注册排队就已经乱作一团了:



不过,相比于会议本身的火爆程度,现场的这点拥挤简直就是小巫见大巫。

业已公布的NIPS会议内容中,


DeepMind有16篇论文;而Facebook仅有10篇论文,但有12场Workshop、2场研讨会,并贴心地给出了直播链接https://www.facebook.com/academics微软研究院的论文要多一些,达到38篇,不过只有2场Workshop;另一家巨头Amazon尽管有4场Workshop,论文却只有6篇……


然而,跟谷歌在今天一早公布的“Google at NIPS 2017”相比,营长瞬间明白了大神在数周前的预测是何其准确:450多位员工、46篇论文、28场Workshop、3场研讨会、2场比赛,这还不算本届大会联席主席Samy Bengio所扮演的角色,及其所组织起来的高达2500人的论文评审队伍。


各家论文合集


DeepMind - https://deepmind.com/blog/deepmind-papers-nips-2017/

Facebook - https://research.fb.com/facebook-research-at-nips-2017/

微软研究院- https://www.microsoft.com/en-us/research/event/microsoft-research-nips-2017/

Amazon - https://www.amazon.jobs/zh/landing_pages/NIPS

Google - https://research.googleblog.com/2017/12/google-at-nips-2017.html


谷歌大脑的主管Jeff Dean说他相当期待本周的大会:


谷歌研究社区主编Christian Howard在文章中说,谷歌将在今年的NIPS大会上扮演重要的角色,这话一点都不假。他是这样写的:


本周,第31届神经信息处理系统年会(NIPS2017)将在加州的长滩举办,这是机器学习和计算神经科学领域的一大盛会,内容包括机器学习领域最新的一些座谈会、demo、演讲和报告。Google将在2017年的NIPS大会上扮演重要的角色,450多名Google员工将通过技术演讲、报告、研讨会、比赛和演示等方式发挥作用,并向这个更大的学术研究社区学习。


Google一直处于机器学习领域的最前沿,积极探索从经典算法到深度学习的所有领域。注重理论和应用,特别是那些能够推动整个领域发展的最新技术,包括自然语言理解、语音、翻译、视觉处理和预测等。通过所有这些任务中,我们开发出了用以理解和概括和学习方法,从而给出了我们探讨老问题新视野,并最终改变了我们工作和生活的方式。


如果你正在参加NIPS 2017,我们希望你能够在我们展示台前停一停,跟我们的研究人员聊一聊Google的项目和机会,谈谈那些能够帮助到数十亿人的有趣问题,并观看一些我们正在进行的、激动人心的研究。


当然,你还可以通过下面的列表中仔细了解我们的各项工作。(别忘了,Google还是本届NIPS大会的白金赞助商。)


本届大会组委会:


程序委员会主席: Samy Bengio

Senior Area Chairs include: Corinna Cortes, Dale Schuurmans, Hugo Larochelle

Area Chairs include: Afshin Rostamizadeh, Amir Globerson, Been Kim, D. Sculley, Dumitru Erhan, Gal Chechik, Hartmut Neven, Honglak Lee, Ian Goodfellow, Jasper Snoek, John Wright, Jon Shlens, Kun Zhang, Lihong Li, Maya Gupta, Moritz Hardt, Navdeep Jaitly, Ryan Adams, Sally Goldman, Sanjiv Kumar, Surya Ganguli, Tara Sainath, Umar Syed, Viren Jain, Vitaly Kuznetsov


Invited Talk


Powering the next 100 years

John Platt


论文(46篇):


A Meta-Learning Perspective on Cold-Start Recommendations for Items

Manasi Vartak, Hugo Larochelle, Arvind Thiagarajan


AdaGAN: Boosting Generative Models

Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, Bernhard Schölkopf


Deep Lattice Networks and Partial Monotonic Functions

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, Maya Gupta


From which world is your graph

Cheng Li, Varun Kanade, Felix MF Wong, Zhenming Liu


Hiding Images in Plain Sight: Deep Steganography

Shumeet Baluja


Improved Graph Laplacian via Geometric Self-Consistency

Dominique Joncas, Marina Meila, James McQueen


Model-Powered Conditional Independence Test

Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros Dimakis, Sanjay Shakkottai


Nonlinear random matrix theory for deep learning

Jeffrey Pennington, Pratik Worah


Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice

Jeffrey Pennington, Samuel Schoenholz, Surya Ganguli


SGD Learns the Conjugate Kernel Class of the Network

Amit Daniely


SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability

Maithra Raghu, Justin Gilmer, Jason Yosinski, Jascha Sohl-Dickstein


Learning Hierarchical Information Flow with Recurrent Neural Modules

Danijar Hafner, Alexander Irpan, James Davidson, Nicolas Heess


Online Learning with Transductive Regret

Scott Yang, Mehryar Mohri


Acceleration and Averaging in Stochastic Descent Dynamics

Walid Krichene, Peter Bartlett


Parameter-Free Online Learning via Model Selection

Dylan J Foster, Satyen Kale, Mehryar Mohri, Karthik Sridharan


Dynamic Routing Between Capsules

Sara Sabour, Nicholas Frosst, Geoffrey E Hinton


Modulating early visual processing by language

Harm de Vries, Florian Strub, Jeremie Mary, Hugo Larochelle, Olivier Pietquin, Aaron C Courville


MarrNet: 3D Shape Reconstruction via 2.5D Sketches

Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, Josh Tenenbaum


Affinity Clustering: Hierarchical Clustering at Scale

Mahsa Derakhshan, Soheil Behnezhad, Mohammadhossein Bateni, Vahab Mirrokni, MohammadTaghi Hajiaghayi, Silvio Lattanzi, Raimondas Kiveris

Asynchronous Parallel Coordinate Minimization for MAP Inference

Ofer Meshi, Alexander Schwing


Cold-Start Reinforcement Learning with Softmax Policy Gradient

Nan Ding, Radu Soricut


Filtering Variational Objectives

Chris J Maddison, Dieterich Lawson, George Tucker, Mohammad Norouzi, 

Nicolas Heess, Andriy Mnih, Yee Whye Teh, Arnaud Doucet


Multi-Armed Bandits with Metric Movement Costs

Tomer Koren, Roi Livni, Yishay Mansour


Multiscale Quantization for Fast Similarity Search

Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel Holtmann-Rice, David Simcha, Felix Yu


Reducing Reparameterization Gradient Variance

Andrew Miller, Nicholas Foti, Alexander D'Amour, Ryan Adams


Statistical Cost Sharing

Eric Balkanski, Umar Syed, Sergei Vassilvitskii


The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings

Krzysztof Choromanski, Mark Rowland, Adrian Weller


Value Prediction Network

Junhyuk Oh, Satinder Singh, Honglak Lee


REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

George Tucker, Andriy Mnih, Chris J Maddison, Dieterich Lawson, Jascha Sohl-Dickstein


Approximation and Convergence Properties of Generative Adversarial Learning

Shuang Liu, Olivier Bousquet, Kamalika Chaudhuri


Attention is All you Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, Illia Polosukhin


PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference

Jonathan Huggins, Ryan Adams, Tamara Broderick


Repeated Inverse Reinforcement Learning

Kareem Amin, Nan Jiang, Satinder Singh


Fair Clustering Through Fairlets

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii


Affine-Invariant Online Optimization and the Low-rank Experts Problem

Tomer Koren, Roi Livni


Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models


Sergey Ioffe

Bridging the Gap Between Value and Policy Based Reinforcement Learning

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans


Discriminative State Space Models

Vitaly Kuznetsov, Mehryar Mohri


Dynamic Revenue Sharing

Santiago Balseiro, Max Lin, Vahab Mirrokni, Renato Leme, Song Zuo


Multi-view Matrix Factorization for Linear Dynamical System Estimation

Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvari


On Blackbox Backpropagation and Jacobian Sensing

Krzysztof Choromanski, Vikas Sindhwani


On the Consistency of Quick Shift

Heinrich Jiang


Revenue Optimization with Approximate Bid Predictions

Andres Munoz, Sergei Vassilvitskii


Shape and Material from Sound

Zhoutong Zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum, Bill Freeman


Learning to See Physics via Visual De-animation

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, Josh Tenenbaum


Conference Demos


Electronic Screen Protector with Efficient and Robust Mobile Vision

Hee Jung Ryu, Florian Schroff


Magenta and deeplearn.js: Real-time Control of DeepGenerative Music Models in the Browser

Curtis Hawthorne, Ian Simon, Adam Roberts, Jesse Engel, Daniel Smilkov, Nikhil Thorat, Douglas Eck


Workshops


6th Workshop on Automated Knowledge Base Construction (AKBC) 2017

Program Committee includes: Arvind Neelakanta

Authors include: Jiazhong Nie, Ni Lao


Acting and Interacting in the Real World: Challenges in Robot Learning

Invited Speakers include: Pierre Sermanet


Advances in Approximate Bayesian Inference

Panel moderator: Matthew D. Hoffman


Conversational AI - Today's Practice and Tomorrow's Potential

Invited Speakers include: Matthew Henderson, Dilek Hakkani-Tur

Organizers include: Larry Heck


Extreme Classification: Multi-class and Multi-label Learning in Extremely Large Label Spaces

Invited Speakers include: Ed Chi, Mehryar Mohri


Learning in the Presence of Strategic Behavior

Invited Speakers include: Mehryar Mohri

Presenters include: Andres Munoz Medina, Sebastien Lahaie, Sergei Vassilvitskii, Balasubramanian Sivan


Learning on Distributions, Functions, Graphs and Groups

Invited speakers include: Corinna Cortes


Machine Deception

Organizers include: Ian Goodfellow

Invited Speakers include: Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow


Machine Learning and Computer Security

Invited Speakers include: Ian Goodfellow

Organizers include: Nicolas Papernot

Authors include: Jacob Buckman, Aurko Roy, Colin Raffel, Ian Goodfellow


Machine Learning for Creativity and Design

Keynote Speakers include: Ian Goodfellow

Organizers include: Doug Eck, David Ha


Machine Learning for Audio Signal Processing (ML4Audio)

Authors include: Aren Jansen, Manoj Plakal, Dan Ellis, Shawn Hershey, Channing Moore, Rif A. Saurous, Yuxuan Wang, RJ Skerry-Ryan, Ying Xiao, Daisy Stanton, Joel Shor, Eric Batternberg, Rob Clark


Machine Learning for Health (ML4H)

Organizers include: Jasper Snoek, Alex Wiltschko

Keynote: Fei-Fei Li


NIPS Time Series Workshop 2017

Organizers include: Vitaly Kuznetsov

Authors include: Brendan Jou


OPT 2017: Optimization for Machine Learning

Organizers include: Sashank Reddi


ML Systems Workshop

Invited Speakers include: Rajat Monga, Alexander Mordvintsev, Chris Olah, Jeff Dean

Authors include: Alex Beutel, Tim Kraska, Ed H. Chi, D. Scully, Michael Terry


Aligned Artificial Intelligence

Invited Speakers include: Ian Goodfellow


Bayesian Deep Learning

Organizers include: Kevin Murphy

Invited speakers include: Nal Kalchbrenner, Matthew D. Hoffman


BigNeuro 2017

Invited speakers include: Viren Jain


Cognitively Informed Artificial Intelligence: Insights From Natural Intelligence

Authors include: Jiazhong Nie, Ni Lao


Deep Learning At Supercomputer Scale

Organizers include: Erich Elsen, Zak Stone, Brennan Saeta, Danijar Haffner


Deep Learning: Bridging Theory and Practice

Invited Speakers include: Ian Goodfellow


Interpreting, Explaining and Visualizing Deep Learning

Invited Speakers include: Been Kim, Honglak Lee

Authors include: Pieter Kinderman, Sara Hooker, Dumitru Erhan, Been Kim


Learning Disentangled Features: from Perception to Control

Organizers include: Honglak Lee

Authors include: Jasmine Hsu, Arkanath Pathak, Abhinav Gupta, James Davidson, Honglak Lee


Learning with Limited Labeled Data: Weak Supervision and Beyond

Invited Speakers include: Ian Goodfellow


Machine Learning on the Phone and other Consumer Devices

Invited Speakers include: Rajat Monga

Organizers include: Hrishikesh Aradhye

Authors include: Suyog Gupta, Sujith Ravi


Optimal Transport and Machine Learning

Organizers include: Olivier Bousquet


The future of gradient-based machine learning software & techniques

Organizers include: Alex Wiltschko, Bart van Merriënboer


Workshop on Meta-Learning

Organizers include: Hugo Larochelle

Panelists include: Samy Bengio

Authors include: Aliaksei Severyn, Sascha Rothe


研讨会:


Deep Reinforcement Learning Symposium

Authors include: Benjamin Eysenbach, Shane Gu, Julian Ibarz, Sergey Levine


Interpretable Machine Learning

Authors include: Minmin Chen


Metalearning

Organizers include: Quoc V Le


比赛:


Adversarial Attacks and Defences

Organizers include: Alexey Kurakin, Ian Goodfellow, Samy Bengio


Competition IV: Classifying Clinically Actionable Genetic Mutations

Organizers include: Wendy Kan


Tutorial


Fairness in Machine Learning

Solon Barocas, Moritz Hardt



热文精选


何恺明团队推出Mask^X R-CNN,将实例分割扩展到3000类

AI人才缺失催生的“跨境猎头”,人才年薪高达300万,猎头直赚100万

如何成为一名全栈语音识别工程师?

Twitter大牛写给你的机器学习进阶手册

AI研究生应届生年薪可达50万 没出校门已被"抢光

深度学习高手该怎样炼成?这位拿下阿里天池大赛冠军的中科院博士为你规划了一份专业成长路径

专访图灵奖得主John Hopcroft:中国必须提升本科教育水平,才能在AI领域赶上美国

2017年首份中美数据科学对比报告,Python受欢迎度排名第一,美国数据工作者年薪中位数高达11万美金


Jeff Dean| 面向系统的机器学习和面向机器学习的系统

来源:全球人工智能概要:我们将发布一系列内容,展示 Google 在 NIPS 2017 上发布的工作成果。首当其冲的便是来自 Jeff Dean 的 PPT 《面向系统的机器学习和面向机器学习的系统...
  • cf2SudS8x8F0v
  • cf2SudS8x8F0v
  • 2017年12月21日 00:00
  • 41

C++程序员学Java系列之十八:继承和抽象

继承 关键字:extends 格式: class 子类 extends 父类 {} 在Java中,类的继承是指在一个现有类的基础上去构建一个新的类,构建出来的新类被称作子类,现有类被称作父类,子类...
  • u010921682
  • u010921682
  • 2017年07月18日 00:18
  • 120

Google谷歌的未来 & 野心:2017 Google I/O 大会 全程回顾

前言 在刚过去的凌晨(北京时间 5月18日 1.00-3.00),一年一度的2017年 Google I/O大会 在美国 谷歌山景城 海岸线圆形剧场 如期举行 Google I/O 大会:I...
  • carson_ho
  • carson_ho
  • 2017年05月18日 20:39
  • 19972

2017 NIPS 哪家强?我们统计了大会发文数量,谷歌和CMU稳居老大

作者:Robbie Allen 编译:HAPPEN、林海、Niki、Aileen    第31届神经信息处理系统大会(NIPS)上周在加州长滩(Long Beach)举行。NIPS可以说是AI领...
  • dzJx2EOtaA24Adr
  • dzJx2EOtaA24Adr
  • 2017年12月12日 00:00
  • 211

公司新年第一次全员大会小记

这次新年全体大会,是2015年1月7日,公司2周年-年会的彩排,公司几大核心,分享了不少信息。大老板:做了很多年的销售,当过司机,也在内蒙古开了电力周边的公司。未了临时筹集20万元,大费周折。偶然机遇...
  • FansUnion
  • FansUnion
  • 2015年01月05日 22:00
  • 2028

谷歌的AI码农写出了比真码农还有效的机器学习代码!

硅谷Live / 实地探访 / 热点探秘 / 深度探讨 谷歌的AutoML 自动写了机器学习的代码! 根据The Next ...
  • kXYOnA63Ag9zqtXx0
  • kXYOnA63Ag9zqtXx0
  • 2017年10月19日 00:00
  • 889

谷歌AI写的机器学习代码,完爆程序员

来自:cnBeta 链接:cnbeta.com/articles/tech/661493.htm 原文:https://thenextweb.com/artificial-intelligence...
  • UzV80PX5V412NE
  • UzV80PX5V412NE
  • 2017年10月18日 00:00
  • 629

积极重返中国的谷歌,这次瞄准了AI入口

编译 | 项文虎 张震 作者 | Mark Bergen, David Ramli 来源 | Bloomberg 退出中国市场七年之后,谷歌正在积极重返大陆。 不过,谷歌...
  • Uwr44UOuQcNsUQb60zk2
  • Uwr44UOuQcNsUQb60zk2
  • 2017年11月01日 06:38
  • 89

NIPS大会终成AI人才争夺战

原文链接:点击打开链接 这两年,最热门的话题莫过于人工智能,随着人工智能在自动驾驶和先进医学等领域的地位变得不可或缺,领先科技公司的全球顶尖人才争夺战正在升温。 据一个参与者的说法,本月早...
  • qq_40954115
  • qq_40954115
  • 2017年12月29日 15:17
  • 83

2018年【计算机视觉&机器学习&人工智能】国际重要会议汇总

转自:http://www.sohu.com/a/206338786_100007727 2018年【计算机视觉&机器学习&人工智能】国际重要会议汇总 每年全世界都会举...
  • liujingjing669
  • liujingjing669
  • 2018年01月09日 21:43
  • 91
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:NIPS | 谷歌AI大军来袭,看450多名员工如何横扫今年大会
举报原因:
原因补充:

(最多只允许输入30个字)