关闭

初探贝叶斯(Bayes)公式

引例贝叶斯公式是考虑某事件已经发生,要考察引发该事件的各种原因的可能性大小。贝叶斯公式是决策中具有重要作用的公式公式...
阅读(149) 评论(0)

机器学习笔记-评估方法

常用的方法: 1. 留出法(hold-out)直接将数据集D划分为两个互斥的集合,其中一个作为训练集S,另一个作为测试集T。 2. 交叉验证(cross validation) 3. 自助法(bootstrapping)是一个比较好的解决方案,直接以自动采样有放回的采样多次。...
阅读(64) 评论(0)

机器学习笔记-决策树到随机森林概念篇

参考百度百科基本概念 分类器:分类器就是给定一个样本的数据,判定这个样本属于哪个类别的算法。例如在股票涨跌预测中,我们认为前一天的交易量和收盘价对于第二天的涨跌是有影响的,那么分类器就是通过样本的交易量和收盘价预测第二天的涨跌情况的算法。 分裂:在决策树的训练过程中,需要一次次的将训练数据集分裂成两个子数据集,这个过程就叫做分裂。 特征:在分类问题中,输入到分类器中的数据叫做特征。以上面的股票涨跌预...
阅读(87) 评论(0)

机器学习笔记-参数调优和评价指标

参数 在机器学习应用中,我们有两种类型的参数: 一个是从训练集中学得的参数,例如逻辑回归的权重; 另一个是为了使学习算法达到最优化可调节的参数,例如逻辑回归中的正则化参数或决策树中的深度参数。这种可调节的参数称为超参数(hyperparameters)。 grid_search优化参数 我们可以用验证曲线调节超参数中的一个参数来优化模型。现在,我们要用网格搜索这个更加强大的超参数优化工具...
阅读(64) 评论(0)

机器学习笔记-分类和聚类基本概念

参考知乎回答分类分类是数据挖掘中的一项非常重要的任务,利用分类技术可以从数据集中提取描述数据类的一个函数或模型(也常称为分类器),并把数据集中的每个对象归结到某个已知的对象类中。从机器学习的观点,分类技术是一种有指导的学习,即每个训练样本的数据对象已经有类标识,通过学习可以形成表达数据对象与类标识间对应的知识。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射...
阅读(67) 评论(0)

Python-一个因浅复制和深复制引起的bug

通过一个leetcode的题目认识了解注意下python的深复制和浅复制问题。...
阅读(352) 评论(1)

斯坦福大学-大数据与数据挖掘学习资料

1 斯坦福数据挖掘 http://mmds.org/ 截图: 2 厦门大学数据库实验室 http://dblab.xmu.edu.cn/...
阅读(146) 评论(0)

python所有的内置模块官方索引

python所有的内置模块官方索引地址:https://docs.python.org/3/py-modindex.html...
阅读(132) 评论(0)

Numpy-复制操作

复制操作Numpy中复制操作有三种,分别总结。=Simple assignments make no copy of array objects or of their data. 这是高级语言如C#等引用类型,对a的引用加1。viewThe view method creates a new array object that looks ate the same data. 这个方法只是在...
阅读(368) 评论(0)

Numpy-range, arange

range查看 range 的帮助文档,help(range)help(range)解释如下Help on class range in module builtins:class range(object) | range(stop) -> range object | range(start, stop[, step]) -> range object | | Return a...
阅读(408) 评论(0)

Numpy-基本操作

Numpy介绍NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟...
阅读(306) 评论(0)

python-list与set相互转换时的一个注意事项

list初始化,里面的元素是set,n1={"","I","II","III","IV","V","VI","VII","VIII","IX"} #1~9 n10={"","X","XX","XXX","XL","L","LX","LXX","LXXX","XC"} #10~90 n100={"","C","CC","CCC","CD","D","DC","DCC","DCCC","CM"} #10...
阅读(251) 评论(0)

python与C, C++,C#一个计算精度的区别

python计算精度问题,如下所示,会自动保留精度 但在C, C++,C#中情况就不尽然,是的结果为01/(Math.Pow(10,3) = 0...
阅读(392) 评论(0)

图像处理中,outlier和inlier分别指什么?

可以这样理解: 如图所示,给定一些点(红+绿+黑)要求用这些数据点拟合椭圆。 以ransac拟合椭圆为例,可以看出,黄色椭圆为拟合结果, 红色点是由ransac随机选择用来拟合的数据点 黑色点是除红色点外距离椭圆距离小于某一阈值的点,而绿色点是距离椭圆距离大于这一阈值的点 那么,红色+黑色点即为内点,而绿色点为外点: RANSAC为Random Sample Consensus的...
阅读(420) 评论(0)

入门-误差逆传播算法

定义误差逆传播算法(backpropagation BP算法)是迄今最成功的的神经网络算法。显示任务中使用神经网络时,大多是在使用BP算法进行训练。不仅适用于多层前馈神经网络,还可以用于其他类型的神经网络,训练递归。BP算法如下图的神经网络,有一隐式层,ll个神经元组成的输出层。 重点介绍标准的BP算法,也就是只考虑单个输入神经元节点的误差逆传播,研究的输入例为(xk,yk)(x_k,y_k),假...
阅读(315) 评论(0)

入门-神经元模型,感知机与多层网络

M-P模型1943年,McCulloch and Pitts抽象出了“M-P神经元模型”,神经元接受到来自nn个其他神经元传递过来的输入信号,通过带权重的值连接传递,神经元接受到的总输入值与神经元的阈值进行比较,通过激活函数(activation function)处理输出。激活函数理想中的激活函数如下图所示的阶跃函数,它将输入值映射为输出值0 (对应于神经元抑制)或 1(对应于神经元兴奋)。...
阅读(198) 评论(0)

python-基础结构

特殊运算符** : 指数符号 10**2 = 100声明声明并初始化months = []添加元素通过append接口添加元素months.append("January") months.append("February")添加不同类型的元素到list中,比如float,int,string等类型。months=[] months.append(1) months.append("January...
阅读(297) 评论(0)

机器学习-基本术语

数据集(data set) 记录的集合,如(色泽=青绿;根蒂=蜷缩;敲声=浊响) 示例(instance) 每条记录是关于一个事件或对象的描述,也称为样本。 属性(attribute) 反映事件或对象在某方面的表现或性质的事项,例如色泽,根蒂等,又称为特征(feature)。属性上的取值,如青绿,浊响等,称为属性值(attribute value)。 样本空间(sample space)...
阅读(132) 评论(0)

机器学习利用Anaconda搭建Python科学计算环境

机器学习利用Anaconda搭建Python科学计算环境...
阅读(571) 评论(0)
    Leetcode Solutions in Github

    Click me

    Leetcode solutions in Github, including tags: Array, HashTable, Stack, Queue, LinkedList, Tree, Graph,...

    leetcode-manager

    Click me

    Current Leetcode manager: it's used by Entity Framework, WinForms, Sql Server to manage leetcode questions that we have done. Functions include tags creation, revise and deletion, and questions creation, edit and deletion.

    个人资料
    • 访问:126188次
    • 积分:5037
    • 等级:
    • 排名:第5927名
    • 原创:311篇
    • 转载:0篇
    • 译文:0篇
    • 评论:53条
    博客专栏