FW:理解矩阵(三)(2)

原创 2011年01月10日 14:47:00

By 孟岩

回过头来说变换的问题。我刚才说,“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换”,那个“固定对象”我们找到了,就是那个向量。但是坐标系的变换呢?我怎么没看见?
请看:
       Ma = Ib
我现在要变M为I,怎么变?对了,再前面乘以个M-1,也就是M的逆矩阵。换句话说,你不是有一个坐标系M吗,现在我让它乘以个M-1,变成I,这样一来的话,原来M坐标系中的a在I中一量,就得到b了。
我建议你此时此刻拿起纸笔,画画图,求得对这件事情的理解。比如,你画一个坐标系,x轴上的衡量单位是2,y轴上的衡量单位是3,在这样一个坐标系里,坐标为(1,1)的那一点,实际上就是笛卡尔坐标系里的点(2, 3)。而让它原形毕露的办法,就是把原来那个坐标系:
       2 0
       0 3
的x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3,这样一来坐标系就变成单位坐标系I了。保持点不变,那个向量现在就变成了(2, 3)了。
怎么能够让“x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3”呢?就是让原坐标系:
      2 0
      0 3
被矩阵:
       1/2   0
         0   1/3
左乘。而这个矩阵就是原矩阵的逆矩阵。
下面我们得出一个重要的结论:
“对坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变化的矩阵相乘。”
再一次的,矩阵的乘法变成了运动的施加。只不过,被施加运动的不再是向量,而是另一个坐标系。
如果你觉得你还搞得清楚,请再想一下刚才已经提到的结论,矩阵MxN,一方面表明坐标系N在运动M下的变换结果,另一方面,把M当成N的前缀,当成N的环境描述,那么就是说,在M坐标系度量下,有另一个坐标系N。这个坐标系N如果放在I坐标系中度量,其结果为坐标系MxN。
在这里,我实际上已经回答了一般人在学习线性代数是最困惑的一个问题,那就是为什么矩阵的乘法要规定成这样。简单地说,是因为:
1. 从变换的观点看,对坐标系N施加M变换,就是把组成坐标系N的每一个向量施加M变换。
        2. 从坐标系的观点看,在M坐标系中表现为N的另一个坐标系,这也归结为,对N坐标系基的每一个向量,把它在I坐标系中的坐标找出来,然后汇成一个新的矩阵。
        3. 至于矩阵乘以向量为什么要那样规定,那是因为一个在M中度量为a的向量,如果想要恢复在I中的真像,就必须分别与M中的每一个向量进行內积运算。我把这个结论的推导留给感兴趣的朋友吧。应该说,其实到了这一步,已经很容易了。
综合以上1/2/3,矩阵的乘法就得那么规定,一切有根有据,绝不是哪个神经病胡思乱想出来的。
我已经无法说得更多了。矩阵又是坐标系,又是变换。到底是坐标系,还是变换,已经说不清楚了,运动与实体在这里统一了,物质与意识的界限已经消失了,一切归于无法言说,无法定义了。道可道,非常道,名可名,非常名。矩阵是在是不可道之道,不可名之名的东西。到了这个时候,我们不得不承认,我们伟大的线性代数课本上说的矩阵定义,是无比正确的:
        “矩阵就是由m行n列数放在一起组成的数学对象。”
好了,这基本上就是我想说的全部了。还留下一个行列式的问题。矩阵M的行列式实际上是组成M的各个向量按照平行四边形法则搭成一个n维立方体的体积。对于这一点,我只能感叹于其精妙,却无法揭开其中奥秘了。也许我掌握的数学工具不够,我希望有人能够给我们大家讲解其中的道理了。
我不知道是否讲得足够清楚了,反正这一部分需要您花些功夫去推敲。
此外,请大家不必等待这个系列的后续部分。以我的工作情况而言,近期内很难保证继续投入脑力到这个领域中,尽管我仍然对此兴致浓厚。不过如果还有(四)的话,可能是一些站在应用层面的考虑,比如对计算机图形学相关算法的理解。但是我不承诺这些讨论近期内会出现了。

FW:理解矩阵(三)(1)

这两篇文章发表于去年的4月。在第二部分结束的时候,我说: ….. 首先来总结一下前面两部分的一些主要结论: 1. 首先有空间,空间可以容纳对象运动的。一种空间对应一类对象。 2. 有一种...
  • damoguyan8844
  • damoguyan8844
  • 2011年01月10日 14:48
  • 306

FW:理解矩阵(二)

By 孟岩 接着理解矩阵。 上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。...
  • damoguyan8844
  • damoguyan8844
  • 2011年01月10日 14:48
  • 330

FW:理解矩阵(一)

BY 孟岩 前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势...
  • damoguyan8844
  • damoguyan8844
  • 2011年01月10日 14:49
  • 321

特殊矩阵——三对角矩阵(Tridiagonal Matrix)

特殊矩阵——三对角矩阵(Tridiagonal Matrix) 1. 三对角矩阵的概念 三对角矩阵就是对角线、邻近对角线的上下次对角线上有元素,其他位置均为0的矩阵。 三对角矩阵是一种特殊的上He...
  • cainv89
  • cainv89
  • 2016年06月27日 13:06
  • 2022

三对角矩阵压缩存储--注意对角元素的下标

三对角矩阵压缩存储--注意对角元素的下标 对角矩阵的压缩存储   对角矩阵是指所有非零元素全部集中在中心几条对角线上的矩阵。下面以三对角矩阵(所有非零元素集中在中心三条对角线上)为例描述对角矩阵的...
  • moyanmalin
  • moyanmalin
  • 2016年08月13日 09:40
  • 2396

Opencv 三对角线矩阵(Tridiagonal Matrix)解法之(Thomas Algorithm)

三对角线矩阵(Tridiagonal Matrix)的(Thomas Algorithm)解法。
  • YhL_Leo
  • YhL_Leo
  • 2015年09月03日 15:17
  • 4888

三对角矩阵压缩

三对角矩阵压缩在一个100阶的**三对角矩阵**M,其元素mi,j(1≤i≤100,1≤j≤100)m_{i,j}(1\leq i\leq 100, 1\leq j \leq 100),按照行优先顺序...
  • u011240016
  • u011240016
  • 2016年11月21日 16:10
  • 1147

FreeMarker学习使用(1)

FreeMarker的使用比较简单,只需要一个FreeMarker的jar包即可。 FreeMarker项目地址http://freemarker.org/,中文手册地址:http://source...
  • lee1991723
  • lee1991723
  • 2015年09月21日 09:51
  • 406

矩阵再理解----从Ax=b说起

(你从未这样理解过矩阵、基向量、空间和子空间,你也从未这样认识过最小二乘、矩阵的广义逆、你也从未这样理解过矩阵的低秩近似)...
  • aresmiki
  • aresmiki
  • 2016年11月19日 22:13
  • 342

三对角阵的LU分解和三对角方程组的求解(C语言)

/*三对角阵的LU分解和三对角方程组的求解 -------------A=LU的分解算法------- 参考教材:《数值分析》李乃成,梅立泉,科学出版社     《计算方法教程》第二版 凌永...
  • zhangchao3322218
  • zhangchao3322218
  • 2012年03月30日 18:42
  • 2940
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:FW:理解矩阵(三)(2)
举报原因:
原因补充:

(最多只允许输入30个字)