# UVA-122-TREE ON THE LEVEL

## subject

Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines’ CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in computer graphics.

This problem involves building and traversing binary trees.

The Problem

Given a sequence of binary trees, you are to write a program that prints a level-order traversal of each tree. In this problem each node of a binary tree contains a positive integer and all binary trees have have fewer than 256 nodes.

In a level-order traversal of a tree, the data in all nodes at a given level are printed in left-to-right order and all nodes at level k are printed before all nodes at level k+1.

For example, a level order traversal of the tree

picture28

is: 5, 4, 8, 11, 13, 4, 7, 2, 1.

In this problem a binary tree is specified by a sequence of pairs (n,s) where n is the value at the node whose path from the root is given by the string s. A path is given be a sequence of L’s and R’s where L indicates a left branch and R indicates a right
branch. In the tree diagrammed above, the node containing 13 is specified by (13,RL), and the node containing 2 is specified by (2,LLR). The root node is specified by (5,) where the empty string indicates the path from the root to itself. A binary tree is
considered to be completely specified if every node on all root-to-node paths in the tree is given a value exactly once.

The Input

The input is a sequence of binary trees specified as described above. Each tree in a sequence consists of several pairs (n,s) as described above separated by whitespace. The last entry in each tree is (). No whitespace appears between left and right parentheses.

All nodes contain a positive integer. Every tree in the input will consist of at least one node and no more than 256 nodes. Input is terminated by end-of-file.

The Output

For each completely specified binary tree in the input file, the level order traversal of that tree should be printed. If a tree is not completely specified, i.e., some node in the tree is NOT given a value or
a node is given a value more than once, then the string “not complete” should be printed.

Sample Input

(11,LL) (7,LLL) (8,R)
(5,) (4,L) (13,RL) (2,LLR) (1,RRR) (4,RR) ()
(3,L) (4,R) ()

Sample Output

5 4 8 11 13 4 7 2 1

not complete

## My code:

//uva_122_trees_on_the_level
#include "iostream"
#include "cstdio"
#include "cmath"
#include "cstring"
#include "algorithm"
#include "queue"

#define MAX 10010

using namespace std;

struct Node  {
bool have_v;
int v;
Node *L,*R;
Node():have_v(have_v = false) ,L(NULL),R(NULL){}

int ans[MAX], flt,k;

bool faild ;

void addNode (int v, char *s){
for(int i=0;s[i];i++){
if(s[i]=='L'){
if(cur->L==NULL)cur->L=new Node();
cur=cur->L;
}
else if(s[i]=='R'){
if(cur->R==NULL)cur->R=new Node();
cur=cur->R;
}
}
if(cur->have_v)faild=true;
cur->v=v;
cur->have_v=true;

}

void print() {
queue<Node*>q;
while(!q.empty()){
cur=q.front();
q.pop();
if(cur->have_v==0)flt=0;
if(!flt)break;
ans[k++]=cur->v;
if(cur->L!=NULL)q.push(cur->L);
if(cur->R!=NULL)q.push(cur->R);
}
if(flt&&!faild)for(int i=0;i<k;i++){
if(i)printf(" ");
printf("%d",ans[i]);
}
else printf("not complete");
puts("");
}

void remov_Node (Node *cur){
remov_Node(cur->L);
remov_Node(cur->R);
remov_Node(cur);
}

int main (){
char s[MAX];
while(~scanf("%s",s)){
if (!strcmp(s, "()")) {
flt = 1;
k = 0;
print();
faild = false;
continue;

}
int v;
sscanf(&s[1],"%d",&v );

}
return 0;

}



• 本文已收录于以下专栏：

## uva 122 Trees on the level 二叉树的层次遍历（bfs）

• naipp
• 2016-08-21 21:27
• 92

## UVa 122 Trees on the level 建立二叉树BFS层序遍历

#include #include #include #include using namespace std; const int maxn = 256 + 10; char s[max...

## UVA - 122 Trees on the level

Description Background Trees are fundamental in many branches of computer science. Current...

## UVa 122 - Trees on the level

#include #include #include #include using namespace std; const int maxn=550; const int root=1; int c...

## UVA_122: Trees on the level

Description Background Trees are fundamental in many branches of computer science. Current state...

## 例题6-7 UVA 122 - Trees on the level 树的层次遍历

举报原因： 您举报文章：深度学习：神经网络中的前向传播和反向传播算法推导 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)