数据分析,你是选择R语言还是excel呢?

转载 2016年08月30日 14:10:16

我从事数据分析工作已经有十年之久。最初是出于工作需要,我的经理给我一堆数据,我需要处理这些数据。当时我一直使用的工具是Excel,因为这是我熟练掌握的一款工具。三年前,我开始接触到R,一开始因为功能太多而坚决抵制使用。后来我开始琢磨如何使用。现在我基本不怎么使用Excel了。

  这只是我个人的观点,但是如果你要分析数据,R更胜任这项任务。下面来说说为什么R更适合数据分析。

1465571460-4660-2081.jpg

  这两款工具的使用方法截然不同。使用Excel时,可以通过鼠标点击完成大部分工作,你可以访问界面内不同位置的各种工具。因此Excel非常便于使用(熟能生巧),但是用Excel处理数据非常费时,而且如果接手一个新项目,你必须单调地重复这些流程。使用R时,则通过代码完成所有操作。你把数据载入内存,然后运行脚本来研究并处理数据。这个工具可能不够人性化,但是有以下几点好处。

  我认为,从概念上来说,R更便于使用。如果你在处理多列数据,虽然你只是在处理单个任务,但是却会看到所有的数据。而使用R时,数据都在内存中,只有调出数据才能看到。如果你在转换或计算,你会处理相关列或行的子集,其他所有数据都在后台。我觉得这样更便于关注手头的任务。完成任务后,可将其保存在某个数据帧中,其中只包含所需的列或行数据。你建立了正确的数据集,可解决当前的问题。这样做看似无关紧要,但实际上大受裨益。

  借助R,就可以对其他数据集轻松重复相同的操作。因为所有数据都是通过代码进行处理和研究,因此对新的数据集执行相同的操作也就轻而易举了。使用Excel时,大多数操作都是通过鼠标点击实现,虽然用户体验不错,但对新的数据重复操作却非常费时而枯燥。而R只需载入新的数据集,然后再次运行脚本即可。

1465571460-4040-2081.jpg

  实际上,用代码操作也便于诊断并共享你的分析结果。使用Excel时,大多数的分析结果都基于内存(数据透视表在这里,公式编辑器在另一个表格上等)。而在R中,通过代码执行所有操作,一目了然。如果你在修正一个错误,你很清楚在哪里操作,而如果你需要共享分析结果,只需复制粘贴代码即可。在线查找帮助时,你能准确说明所用数据,并提出具体的问题。事实上,大多数时候,你在线提问时,人们都是直接贴出准确的代码,来解决你的问题。

  R中的项目组织更简单。在Excel中,我要准备一系列表格,可能还要准备多个工作簿,然后适当命名,而且各文件名不得重复。我的项目备注分别保存在各个文件中。我的R项目组织单独设有一个文件夹,我处理过的所有内容都放在其中。清理数据、探索性图表及模型。这样便于我理解和查找,也为与我一起工作的其他人提供方便。当然,Excel也能做到井井有条。我觉得R的简洁性更便于使用。

  上述几点只能说是锦上添花,而并不是必不可少。在没有这些功能之前,我也用了好几年Excel,你应该也一样。现在,我想讲讲R和Excel真正的区别。我想说的是,除了以上那些花哨的小优势之外,R更适合用于数据分析。原因如下。

6.jpg

  你可以把任何数据载入R。数据的保存位置或保存形式并不重要。你可以载入CSV文件,也可以读取JSON,或者执行SQL查询,抑或提取网站。你甚至还可以在R中通过Hadoop处理大数据。

  R是一个完整的工具集,使用的是数据包。在分析数据时,R比Excel更实用。你可使用R执行数据管理、分类和回归,也可以处理图片,并执行其他所有操作。如果机器学习是你的专业,那能想到的任何算法都是小菜一碟。目前,R可用的数据包逾5,000个,因此无论你要处理什么类型的数据,R都能应付自如。

  R的数据可视化效果非常卓越。说句实话,Excel的图表非常出色,简单易懂。但R的效果更好。我觉得这是R最实用的功能之一。借助ggplot2,你可以快速创建所需的各种图表,并根据图表形状自行调整。在你熟悉了如何用ggplot2创建一个图表后,任何其他图表都不在话下。ggplot2还能制作更多类型的图表。你能用Excel创建散点图矩阵吗?用R就能轻松创建这种矩阵,CDFplot也是如此。Excel棋差一招。

  Git版本控制。我一向习惯保存多个版本的分析结果。Git是至今为止我找到的最好用的工具。我使用RStudio作为编辑器,其支持项目。创建一个项目仓库,然后你就能跟踪数据研究的不同版本。你可以创建不同版本的Excel文件,但是这些保存的二进制文件无法显示相互之间的更改部分。而R非常简单。

  我已经说了很多理由。总之,Excel是一款不错的数据分析工具。我相信它能不负众望完成所有任务。但是,如果你只有这一款工具,则会大大影响你的工作效率。相比之下,R更好用,而且提供的工具集模块更完整。而缺点在于不是非常易于上手,用户一开始相对要花很多时间学习使用。如果坚持下去,就会有所收获,不仅对数据更了解,还提高了自己的能力。

举报

相关文章推荐

R语言数据分析技能包

R语言大数据电子书免费赠送

R语言与数据分析【第1季】

当今计算机系统要处理的数据类型变得多种多样,并且为了深入理解,需要对数据进行过滤;同时,开源应用变得越来广受欢迎,这一切都在改变着 R 这一用于统计分析与可视化的语言。随着时代的发展,R语言也在不断的...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

R语言小例子---简易的数据分析和画图

R语言小例子---简易的数据分析和画图

非常简单而又非常完整的R语言主成分分析实例

本篇文章不讲有关主成分分析的理论知识,只讲实际操作。实例:(中学生身体四项指标的主成分分析)在某中学随机抽取某年级30名学生,测量其身高(X1)、体重(X2)、胸围(X3)和坐高(X4),数据如下。试...

R语言 基本数据分析

原文地址:http://blog.csdn.net/abcjennifer/article/details/18997587 本文基于R语言进行基本数据统计分析,包括基本作图,线性拟...

R语言实战:机器学习与数据分析源代码6(最终弹)

本文辑录了《R语言实战——机器学习与数据分析》一书第7章后半部分(137页~145页)至第8章之代码。整合R语言深藏不露的强大威力,决胜数据分析之巅。且听我将统计学之精髓娓娓道来,助你砥砺大数据时代的...

R语言实例-身份证信息提取

1、身份证信息说明 15位身份证号码:第7、8位为出生年份(两位数),第9、10位为出生月份,第11、12位代表出生日期,第15位代表性别,奇数为男,偶数为女。    18位身份证号码:第7、8、...

炼数成金-数据分析展现与R语言15周完整版

更多资源进群: 377215114 《数据分析、展现与R语言》课程介绍如下: 课程内容: 1 基础数据分析知识,包括一些概率统计里的概念、术语,和基本统计量的计算方法等。...

分类算法的R语言实现案例

针对《R语言与网站分析》一书未提供数据集和源代码的情况,自己动手整理了一个可用于其中分类算法的数据集,并且基于该数据集实现了朴素贝叶斯、SVM和人工神经网络等分类算法。附件中有详细的数据集、源程序和说...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)