你知道数据科学家常用的利器有哪些吗?

原创 2016年08月31日 11:55:46

工具/产品/解决方案是数据科学家洞察数据的利器。KDNuggets网站对此观点进行了年度调查,来分析数据科学家在用哪些类型的工具。下面大圣众包小编整理了对大数据从业的你可能会有些帮助的工具!

数据科学常用的工具有哪些?

大数据生态(Hadoop、Spark)和开源项目:

Hadoop,HBase,Hive,Mahout,MLlib,OtherHadoop/HDFSbasedtools,Pig,Scala,Spark,SQLonHadooptools

微软数据科学家工具:

MicrosoftAzureML,MicrosoftPowerBI,MicrosoftSQLServer,RevolutionAnalytics

基于Python的机器学习:

Dataiku,H2O(0xdata),Python,scikit-learn,Theano,Vowpal Wabbit

SAS公司产品:

JMP,SAS Base,SAS Enterprise Miner

MATLAB、R语言等统计工具:

GnuOctave,MATLAB,Orange,R,Rapid Miner,Rattle,Weka

IBM公司产品:

IBM Cognos,IBM SPSSModeler,IBM SPSSStatistics,IBM WatsonAnalytics

Linux工具和SQLang:

Actian,C/C++,Perl,SQLang,Unixshell/awk/gawk

深度学习:

Caffe,Pylearn2

商务智能软件:

PentahoandQlikView

数据分析平台:

Datameer and Zementis

Excel和Word统计工具:

XLSTAT for Excel

其它:

OtherDeep Learningtools,Other free analytics/data mining tools,Other Hadoop/HDF based tools,Other paid analytics/datamining/datascience software,Other programming languages

数据可视化:

C4.5/C5.0/See5,Miner3D,OracleDataMiner

    数据科学家在选择大数据、数据挖掘和数据分析工具时,更倾向于有一定生态基础的工具,这样各个工具间可以相互支持。

    为了提高在大数据项目中成功的机会,选择正确的工具是非常重要的。没有一个孤立的工具能够做所有的数据分析,职业的数据专家趋向于使用不止一种相关的工具(分析中发现,数据专家平均使用5种数据分析工具)。你可以根据使用相关工具的数据专家来决定自己的选择。

    另外一个观点是,要选择大厂的产品,比如,IBM、微软和SAS,大品牌的产品更丰富,可以使得你的产品更容易扩展。


相关文章推荐

SparkR:数据科学家的新利器

摘要:R是数据科学家中最流行的编程语言和环境之一,在Spark中加入对R的支持是社区中较受关注的话题。作为增强Spark对数据科学家群体吸引力的最新举措,最近发布的Spark 1.4版本在现有的Sca...

《数据科学家修炼之道》笔记

  • 2017年10月27日 21:44
  • 516KB
  • 下载

数据科学家修炼之道

  • 2017年11月12日 12:51
  • 31.45MB
  • 下载

Acorns首席数据科学家种骥科:AI在“移动优先”的互联网金融商业模式中的应用

数据猿报道,2017年10月25日,由 数据猿 联合《清华金融评论》共同主办的“2017金融科技价值峰会——数据驱动金融商业裂变”在北京隆重召开。本文为数据猿现场直播“Acorns首席数据科学家种骥科...

数据科学家面试

  • 2017年08月03日 00:23
  • 3.25MB
  • 下载

数据科学家的定义与职责

  • 2011年12月10日 13:05
  • 28KB
  • 下载

《机器学习实战》作者Peter Harrington:如何成为一位数据科学家(图灵访谈)

作者简介: Peter Harrington,拥有电气工程学士和硕士学位,他曾经在美国加州和中国的英特尔公司工作7年。Peter拥有5项美国专利,在三种学术期刊上发表过文章。他现任HG Data首席...

数据科学家的修炼之道(完整版)

  • 2017年03月15日 21:42
  • 41.54MB
  • 下载

如何成长为数据科学家

随着大数据时代的来临,数据分析(科学家)人才也步入了紧缺人才行列。根据麦肯锡报告,仅仅在美国市场,2018年大数据人才和高级分析专家的人才缺口将高达19万。此外美国企业还需要150万位能够提出正确问题...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:你知道数据科学家常用的利器有哪些吗?
举报原因:
原因补充:

(最多只允许输入30个字)