Caffe搭建手记_基于Ubuntu14.04LTS

原创 2016年08月31日 10:12:15

原创作品,请勿转载!
博客源地址:http://blog.csdn.net/dawin_2008/article/details/52382237

CAFFE+Ubuntu14.04LTS+CUDA7.5+cuDNN+OpenCV3.0+OpenBLAS+Anaconda+Matlab R2014a

我的硬件配置:
内存:4GB
处理器:i3-2120CPU@3.30GHz * 4
图形:GeForce GTX 960/PCIe/SSE2
操作系统:Ubuntu14.04LTS 64位
磁盘:100GB

注意以下几点:

1、一定要在root环境下安装,否则出现很多不必要的授权问题,例如不能读lib
2、在root环境下修改~/.bashrc,否则出现lib文件路径不存在的问题
3、在终端安装第三方文件要测试网速,否则有些会报错,例如opencv有一个第三方插件,我会把要安装的放在csdn下载地址,供大家下载

Ubuntu14.04LTS安装

我是采用双系统的,在Windows7环境下安装easyBCD,然后按照百度经验的流程走就行了,参考如下:

http://jingyan.baidu.com/article/e4d08ffdace06e0fd2f60d39.html

安装依赖库

sudo apt-get install build-essential # basic requirement
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler #required by caffe
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

CUDA Toolkit 7.5安装

1.查看自己的显卡是否能安装CUDA Toolkit 7.5

$ lspci | grep -i nvidia

只要型号存在于https://developer.nvidia.com/cuda-gpus,就没问题了

2.下载 NVIDIA CUDA Toolkit7.5

下载地址:https://developer.nvidia.com/cuda-toolkit
$ md5sum <filename>
验证地址:https://developer.nvidia.com/rdp/cuda-rc-checksums

我下载的是 cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb,关闭lightdm,以免和原来的驱动发生冲突:
$ sudo service lightdm stop
按下ctrl+alt+F2进入命令行模式,在命令行中输入:
$ cd /path/to/Downloads
$ sudo dpkg -i cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb
$ sudo apt-get update
$ sudo apt-get install -y cuda

添加环境变量到系统配置文件profile:
# sudo gedit /etc/profile
在最后两行添加
export PATH=/usr/local/cuda-7.5/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH
安装完成,重启。

3.安装NVIDIA cuDNN(可选,是用于深度神经网络的GPU加速库)
下载cuDNN,从https://developer.nvidia.com/rdp/cudnn-download,注册,然后下载,我下载的是cudnn-7.0-linux-x64-v4.0-prod.tgz:
$ sudo tar xvf cudnn-7.0-linux-x64-v4.0-prod.tgz
$ cd cuda/include
$ sudo cp *.h /usr/local/include/
$ cd ../lib64
$ sudo cp lib* /usr/local/lib/
$ cd /usr/local/lib
$ sudo chmod +r libcudnn.so.4.0.7
$ sudo ln -sf libcudnn.so.4.0.7 libcudnn.so.4
$ sudo ln -sf libcudnn.so.4 libcudnn.so
$ sudo ldconfig #这里有报错:/sbin/ldconfig.real: /usr/local/lib/libcudnn.so.4 is not a symbolic link但是看来不影响

设置环境变量,添加CUDA环境变量:
sudo gedit /etc/profile
在最后两行继续添加
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
保存后,使环境变量立即生效,
$ source /etc/profile
进入/usr/local/cuda/samples,执行下面的命令来build samples:
$ sudo make all -j4
全部编译完成后,进入 samples/bin/x86_64/linux/release,运行deviceQuery:
$ ./deviceQuery

安装cuDNN效果图

还可以用$ nvcc --version查看版本号,若提示nvcc命令不存在,说明安装有错!

MATLAB R2014a安装

1.挂载iso(需新建matlab_iso文件夹):
$ sudo mount -o loop MATHWORKS_R2014A.iso ~/matlab_iso

2.开始安装:
$ cd ~/matlab_iso
$ sudo ./install

3.选择”install manually without using the internet”项进行安装

4.输入”file installation key”:12345-67890-12345-67890(随便都行)

5.激活:选择”license_405329_R2014a.lic”文件进行激活(在Crack文件夹下面)

6.将libmwservices.so复制到/usr/local/MATLAB/R2014a/bin/glnxa64中:
$ sudo cp libmwservices.so /usr/local/MATLAB/R2014a/bin/glnxa64/libmwservices.so

7.验证:
$ matlab
若不报错就是安装成功

解决编译器gcc/g++版本问题

因为Ubuntu 14.04的gcc/g++版本是4.8.4,而Matlab R2014a(2015a)的版本是4.7.x所以在使用matla调用mex文件的时候,基本上都会报错,根据报错信息,考虑如下两步解决方案。
1.下载gcc/g++ 4.7.x
$ sudo apt-get install -y gcc-4.7
$ sudo apt-get install -y g++-4.7

2.链接gcc/g++实现降级
$ cd /usr/bin
$ sudo rm gcc
$ sudo ln -s gcc-4.7 gcc
$ sudo rm g++
$ sudo ln -s g++-4.7 g++
降级成功!

安装OpenCV3.0

下载OpenCV3.0:
OpenCV3.0
安装依赖库:
$ sudo apt-get install build-essential
$ sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
$ sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
在/home/username/中新建/opencv
$ cd ~/opencv
$ mkdir release
$ cd release
$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
$ make
$ sudo make install
编译samples程序:
$ cd ~/opencv/samples
$ sudo cmake .
$ sudo make -j $(nproc)
运行测试程序:
(测试程序根据版本不同会有不同的数据路径等等)
# 注:使用alpha版本,images在opencv/cpp文件夹下
$ cd cpp/
$ ./cpp-example-facedetect lena.jpg

安装OpenBLAS

1.下载OpenBLAS:

http://github.com/xianyi/OpenBLAS/archive/v0.2.19.tar.gz

2.安装:
$ mkdir ~/OpenBLAS
$ cd ~/OpenBLAS
$ tar zxvf OpenBLAS-0.2.19.tar.gz
$ make
$ make PREFIX=/home/username/OpenBLAS
3、添加环境变量到/etc/profile并source:
export LD_LIBRARY_PATH=/home/dawin/OpenBLAS:$LD_LIBRARY_PATH

安装Anaconda python

1.下载Anaconda

https://repo.continuum.io/archive/Anaconda2-4.1.1-Linux-x86_64.sh

2.安装:
$ bash ~/Downloads/Anaconda3-4.0.0-Linux-x86_64.sh

3.添加环境变量,不用每次都要手动输入
3.1.修改profile文件:
在里面最后一行加入:
export PATH=/home/username/anaconda2/bin:$PATH
让环境变量立即生效需要执行如下命令:
$ source /etc/profile

编译caffe

1.下载caffe-master包,解压重命名为caffe,我放在/home目录下

git@github.com:BVLC/caffe.git

2.进入caffe目录,编译主程序
$ cp Makefile.config.example Makefile.config
$ sudo gedit Makefile.config

参数说明

  • CPU_ONLY 是否只使用CPU模式,没有GPU没安装CUDA的同学可以打开这个选项
  • BLAS (使用intel mkl、atlas还是OpenBLAS)我用的是优化后的BLAS,即OpenBLAS,所以 BLAS=:open 并加入库文件路径
  • MATLAB_DIR 如果需要使用MATLAB wrapper的同学需要指定matlab的安装路径, 如我的路径为 /usr/local/MATLAB/R2014a (注意该目录下需要包含bin文件夹,bin文件夹里应该包含mex二进制程序)

我的Makefile.config配置如下:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#   You should not set this flag if you will be reading LMDBs with any
#   possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
        -gencode arch=compute_20,code=sm_21 \
        -gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /usr/local/MATLAB/R2014a
#MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
        /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
           $(ANACONDA_HOME)/include/python2.7 \
           $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

$ make all -j4 #使用多核加速,我的是四核
$ make test
$ make runtest

出现报错信息:

error while loading shared libraries: libhdf5_hl.so.10: cannot open shared object file: No such file or directory

凡是这种情况,如果报错文件的确是存在,就把文件所在的路径加入环境变量,在~./bashrc添加文件所在路径,这是我成功编译后的bashrc文件添加的路径:

export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH=/home/dawin/anaconda2/lib:$LD_LIBRARY_PATH
#请勿添加此条到/etc/profile中,否则无法进入系统
export LD_LIBRARY_PATH=/home/dawin/OpenBLAS:$LD_LIBRARY_PATH

再make runtest,效果如图:
caffe安装成功效果图

3.编译Matlab wrapper
$ make matcaffe
然后就可以跑官方的matlab demo!

4.编译Python wrapper
$ make pycaffe
修改profile文件:
export PYTHONPATH=/home/username/caffe/python:$PYTHONPATH
以后也可以跑官方的demo

5.验证python接口
$ python
在python命令环境下输入import caffe,出现报错:

ImportError: No module named google.protobuf.internal

这是因为有两个python路径在变量环境中,要给anaconda中python和系统中的python安装protobuf,退出python,输入以下命令:
$ sudo pip install protobuf
$ sudo /home/dawin/anaconda2/bin/pip install protobuf
再次在python命令环境下输入import caffe,不报错就成功了!

后记

安装caffe真是一个大工程,我从windows里面安装caffe,再到ubuntu中安装花了半个月,接着试图测试fast-rcnn和faster-rcnn都没成功,最后测试rcnn成功,可是前几天手贱输入nvcc,提示没有安装nvcc,就重新安装nvcc,导致显卡冲突并且不能重新安装nvidia的显卡,只能被逼着重装ubuntu,道路相当曲折,在此过程中感谢我的两位导师–贺博和周博,没有他们的指导我很难继续下去,希望这是我做神经网络相关课题的良好开端

参考网站:

http://caffe.berkeleyvision.org/installation.html#compilation
http://blog.csdn.net/YhL_Leo/article/details/50961542
http://www.cnblogs.com/wm123/p/5385940.html
http://blog.mindcont.com/2016/07/20/ubuntu1404-caffe-cuda7-5-mkl/
http://blog.csdn.net/u013915633/article/details/49886465

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

2015.08.17 Ubuntu 14.04+cuda 7.5+caffe安装配置

折腾了两个星期的caffe,windows和ubuntu下都安装成功了。其中windows的安装配置参考官网推荐的那个blog,后来发现那个版本的caffe太老,和现在的不兼容,一些关键字都不一样,果...
  • ubunfans
  • ubunfans
  • 2015年08月17日 16:21
  • 69875

Ubuntu14.04 安装Caffe(仅CPU)

Ubuntu14.04 安装Caffe(仅CPU)

Caffe实战系列:最简洁的Caffe安装教程(以ubuntu14.04为例)

本文介绍了使用包管理工具安装显卡驱动以及cuda sdk以及caffe的依赖项,最后介绍了caffe的编译过程。介绍简洁命了名了,便于小白学习。...

ubuntu14.04安装Anaconda、opencv3.1、caffe

博主电脑配置: 操作系统:buntu 14.04LTS 64位 处理器:Intel® Core™ i7-7700K CPU @ 4.20GHz × 8 图形适配器:GeForce GTX 1080 ...

ubuntu14.04在cpu上配置caffe以及py-faster-rcnn环境(可在odroid上实现)

一、安装依赖项 安装blas$ sudo apt-get install libatlas-base-dev安装其他依赖库$ sudo apt-get install libprotobuf-dev...

零错误安装基于ubuntu14.04LTS的CUP版本深度学习框架Caffe

深度学习这么火,对于有幸从事机器学习的我而言激动不已,无奈caffe安装较为繁琐,加之硬件条件的限制,使得自己不得不对其望而却步。不过google的一款深度学习框架tensorflow安装较为简单,在...
  • yjfncu
  • yjfncu
  • 2017年04月29日 17:45
  • 171

ubuntu14.04LTS 搭建 python2.7+Qt 5.5+PyQt5开发环境

python有许许多多的GUI开发包,PyQt正式其中之一。那么什么是PyQt呢,PyQt是基于Qt框架开发的一个用于创建GUI程序的工具包。它将python语言和Qt库成功融合在了一起。PyQt有数...

Ubuntu参考手册14.04 LTS第二版.rar

  • 2015年02月03日 23:43
  • 7.07MB
  • 下载

ubuntu14.04 LTS系统上android开发环境搭建

最近在学习android开发,最开始是在windows系统环境下进行学习开发,但感觉adt bundle在windows环境下速度实在无法忍受,而且android本来是基于linux系统开发的,在li...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Caffe搭建手记_基于Ubuntu14.04LTS
举报原因:
原因补充:

(最多只允许输入30个字)