关闭

一:二叉树的性质及创建

标签: 二叉树二叉树的性质二叉树的创建
137人阅读 评论(0) 收藏 举报
分类:

二叉树的性质

 

性质1:在二叉树的第i层上至多有2i-1个结点(i≥1)。(数学归纳法可证)

性质2:深度为k的二叉树最多有2k-1个结点(k≥1)。(由性质1,通过等比数列求和可证)

性质3:一棵二叉树的叶子结点数为n0,度为2的结点数为n2,则n0 = n2 + 1。

证:结点总数n = n0 + n1 + n2。设B为分支总数,因为除根节点外,其余结点都有一个分支进入,所以n = B + 1。又因为分支是由度为1或2的结点射出,所以B = n1 + 2n2。综上:n = n0 + n1 + n2 = B + 1 = n1 + 2n2 + 1,得出:n0 = n2 + 1。

性质4:具有n个结点的完全二叉树的深度为floor(log2n) + 1 。

性质5:如果对一棵有n个结点的完全二叉树(其深度为floor(log2n) + 1 )的结点按层序编号,则对任一结点i(1≤i≤n)有:

(1) 如果i = 1,则结点i是二叉树的根,无双亲;如果i > 1,则其双亲PARENT(i)是结点 floor((i)/2)。

(2)如果2i > n,则结点i无左孩子;否则其左孩子LCHILD(i)是结点2i。

(3)如果2i + 1 > n,则结点i无右孩子;否则其右孩子RCHILD(i)是结点2i + 1。

 

二叉树创建


BiTreeCreate(BiTree T)   //建立二叉树

{

   char ch;

   ch=getchar();

   if(ch=='#')

   T=NULL;

   else

   {

   if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))

   printf("Error!");

   T->data=ch;

   T->lchild=Create(T->lchild);

   T->rchild=Create(T->rchild);

   }

   return T;

}

 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:12321次
    • 积分:386
    • 等级:
    • 排名:千里之外
    • 原创:27篇
    • 转载:2篇
    • 译文:0篇
    • 评论:0条
    文章存档