一:二叉树的性质及创建

原创 2015年07月06日 16:31:45

二叉树的性质

 

性质1:在二叉树的第i层上至多有2i-1个结点(i≥1)。(数学归纳法可证)

性质2:深度为k的二叉树最多有2k-1个结点(k≥1)。(由性质1,通过等比数列求和可证)

性质3:一棵二叉树的叶子结点数为n0,度为2的结点数为n2,则n0 = n2 + 1。

证:结点总数n = n0 + n1 + n2。设B为分支总数,因为除根节点外,其余结点都有一个分支进入,所以n = B + 1。又因为分支是由度为1或2的结点射出,所以B = n1 + 2n2。综上:n = n0 + n1 + n2 = B + 1 = n1 + 2n2 + 1,得出:n0 = n2 + 1。

性质4:具有n个结点的完全二叉树的深度为floor(log2n) + 1 。

性质5:如果对一棵有n个结点的完全二叉树(其深度为floor(log2n) + 1 )的结点按层序编号,则对任一结点i(1≤i≤n)有:

(1) 如果i = 1,则结点i是二叉树的根,无双亲;如果i > 1,则其双亲PARENT(i)是结点 floor((i)/2)。

(2)如果2i > n,则结点i无左孩子;否则其左孩子LCHILD(i)是结点2i。

(3)如果2i + 1 > n,则结点i无右孩子;否则其右孩子RCHILD(i)是结点2i + 1。

 

二叉树创建


BiTreeCreate(BiTree T)   //建立二叉树

{

   char ch;

   ch=getchar();

   if(ch=='#')

   T=NULL;

   else

   {

   if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))

   printf("Error!");

   T->data=ch;

   T->lchild=Create(T->lchild);

   T->rchild=Create(T->rchild);

   }

   return T;

}

 

相关文章推荐

树、二叉树的性质和存储结构

  • 2016年11月18日 22:55
  • 169KB
  • 下载

二叉树的性质

  • 2008年06月06日 15:52
  • 29KB
  • 下载

二叉树的性质

二叉树的性质 性质1:   在二叉树第i层上至多有2i-1 个结点(i≥1)。 方法1证明: 归纳法 当i=1时,二叉树的第1层只有一个根结点。2i-1=21-1=20=1成立。 假设该命题对所有j(...

二叉树的特点和性质

  • 2012年09月24日 21:12
  • 13KB
  • 下载

树和二叉树的定义,性质

  • 2011年11月02日 15:25
  • 999KB
  • 下载

二叉树性质操作遍历总结

这几天面试都碰到了二叉树,在此将问题总结下,以备今后再遇。 参考文献: 1. 数据结构与算法分析——c语言描述 2. 百度百科http://baike.baidu.com/view/88...

二叉树(1)——定义,性质及结构

一  二叉树定义: 满足以下三个条件 1,根节点 2,去跟,分成两个不相交的集合TL和TR 3,TL和TR也为二叉树(递归定义) 二 基本形态: 由三个节点构成的二叉树的个数 三 性质: 1,...

二叉树的基本性质

(1) 在二叉树的第k层上,最多有2k-1(k≥1)个结点; 解释:最多的时候是满二叉树,它的第1层有21-1=1个结点;第2层有22-1=2个结点;第3层23-1=4个结点;第4层有24-1=...

平衡二叉树之一(基本性质、查询、添加)

平衡二叉树之一(基本性质、查询、添加) 分类: 数据结构&算法2013-09-14 22:17 1758人阅读 评论(0) 收藏 举报 平衡二叉树右旋左旋插入 目录(...

二叉树之基础篇--基本性质

二叉树具有以下重要性质: 性质1 二叉树第i层上的结点数目最多为2i-1(i≥1)。 证明:用数学归纳法证明:      归纳基础:i=1时,有2i-1=20=1。因为第1层上只有一个根结点,所...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:一:二叉树的性质及创建
举报原因:
原因补充:

(最多只允许输入30个字)