七:重建二叉树(根据先序遍历(或者后序遍历)和中序遍历重建二叉树)

原创 2015年07月09日 17:01:28

对于一颗二叉树,可以根据先序遍历(或者后序遍历)和中序遍历(树中不含重复的数字)重新还原出二叉树。


解析:

1. 先序遍历序列的第一个元素必定是根节点,可以由此获取二叉树的根节点。


2. 根据根节点,在中序遍历序列中查找该节点,由中序遍历的性质可知,中序遍历中该根节点左边的序列必定在根节点的左子树中,而根节点右边的序列必定在右子树中。由此可以知道先序遍历中左子树以及右子树的起止位置。


3. 找到了左右子树前序遍历和中序遍历再用同样的方法分别构建左右子树,典型的递归思想。


代码如下:

BinaryTreeNode* ConstructCore

(

   int* startPreorder, int* endPreorder,

   int* startInorder, int* endInorder

)

{

   // 前序遍历序列的第一个数字是根结点的值

   int rootValue = startPreorder[0];

   BinaryTreeNode* root = new BinaryTreeNode();

   root->m_nValue = rootValue;

   root->m_pLeft = root->m_pRight = NULL;

 

   if(startPreorder == endPreorder)

    {

       if(startInorder == endInorder && *startPreorder ==*startInorder)

           return root;

       else

           throw std::exception("Invalid input.");

    }

 

   // 在中序遍历中找到根结点的值

   int* rootInorder = startInorder;

   while(rootInorder <= endInorder && *rootInorder != rootValue)

       ++ rootInorder;

   //判断是否找到根节点

   if(rootInorder == endInorder && *rootInorder != rootValue)

       throw std::exception("Invalid input.");

 

   int leftLength = rootInorder - startInorder;

   int* leftPreorderEnd = startPreorder + leftLength;

   if(leftLength > 0)

    {

       // 构建左子树

       root->m_pLeft = ConstructCore(startPreorder + 1, leftPreorderEnd,

           startInorder, rootInorder - 1);

    }

    if((leftLength+ startPreorder)< endPreorder )    {

       // 构建右子树

       root->m_pRight = ConstructCore(leftPreorderEnd + 1, endPreorder,

           rootInorder + 1, endInorder);

    }

 

   return root;

}

 

BinaryTreeNode* Construct(int* preorder,int* inorder, int length)

{

   if(preorder == NULL || inorder == NULL || length <= 0)

       return NULL;

 

   return ConstructCore(preorder, preorder + length - 1,

       inorder, inorder + length - 1);

}

 


注:《剑指offer》学习总结

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

根据先序遍历序列和中序遍历序列重建二叉树

其实这个题是很有趣的,我在学习二叉树的时候,先序遍历、中序遍历、后续遍历,歘歘歘几行代码就递归完了,但是却没考虑过如果得到了遍历序列后通过遍历序列将二叉树还原。后来就做各种笔试题,然后就碰到了这个问题...

c/c++实现利用二叉树的先序遍历和中序遍历序列重建树

先序遍历中第一个结点必然是根结点,利用该结点在中序遍历中的位置,将树分为左子树和右子树,然后递归重建左子树和右子树,代码如下#include using namespace std; struct...

二叉树的先序遍历

  • 2013-07-08 21:23
  • 165KB
  • 下载

二叉树根据先序遍历和中序遍历,得到后序遍历

二叉树根据先序遍历和中序遍历,得到后序遍历 对于二叉树的先序遍历和中序遍历,由于在先序遍历中第一个访问的总是根节点,因此可以根据先序遍历中的第一个元素,将中序遍历看成是**“左子树中序遍历+根节点+右...

java实现二叉树的先序遍历,中序遍历,后序遍历

import java.util.Stack; //二叉树的节点结构 class TreeNode { int Id=0; String data=null; boolean isVisted=...

数据结构--二叉树的创建、先序遍历、中序遍历、后序遍历、深度、叶子结点数

*用cin来读取char类型时,没法读入“ ”(space),所以要改用getchar()(在头文件#include #include #include using namespace std; ty...

算法:二叉树的先序遍历、中序遍历、后序遍历(递归及非递归方式)的java代码实现

首先来看一棵二叉树: 1、前序遍历: 前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)