七:重建二叉树(根据先序遍历(或者后序遍历)和中序遍历重建二叉树)

原创 2015年07月09日 17:01:28

对于一颗二叉树,可以根据先序遍历(或者后序遍历)和中序遍历(树中不含重复的数字)重新还原出二叉树。


解析:

1. 先序遍历序列的第一个元素必定是根节点,可以由此获取二叉树的根节点。


2. 根据根节点,在中序遍历序列中查找该节点,由中序遍历的性质可知,中序遍历中该根节点左边的序列必定在根节点的左子树中,而根节点右边的序列必定在右子树中。由此可以知道先序遍历中左子树以及右子树的起止位置。


3. 找到了左右子树前序遍历和中序遍历再用同样的方法分别构建左右子树,典型的递归思想。


代码如下:

BinaryTreeNode* ConstructCore

(

   int* startPreorder, int* endPreorder,

   int* startInorder, int* endInorder

)

{

   // 前序遍历序列的第一个数字是根结点的值

   int rootValue = startPreorder[0];

   BinaryTreeNode* root = new BinaryTreeNode();

   root->m_nValue = rootValue;

   root->m_pLeft = root->m_pRight = NULL;

 

   if(startPreorder == endPreorder)

    {

       if(startInorder == endInorder && *startPreorder ==*startInorder)

           return root;

       else

           throw std::exception("Invalid input.");

    }

 

   // 在中序遍历中找到根结点的值

   int* rootInorder = startInorder;

   while(rootInorder <= endInorder && *rootInorder != rootValue)

       ++ rootInorder;

   //判断是否找到根节点

   if(rootInorder == endInorder && *rootInorder != rootValue)

       throw std::exception("Invalid input.");

 

   int leftLength = rootInorder - startInorder;

   int* leftPreorderEnd = startPreorder + leftLength;

   if(leftLength > 0)

    {

       // 构建左子树

       root->m_pLeft = ConstructCore(startPreorder + 1, leftPreorderEnd,

           startInorder, rootInorder - 1);

    }

    if((leftLength+ startPreorder)< endPreorder )    {

       // 构建右子树

       root->m_pRight = ConstructCore(leftPreorderEnd + 1, endPreorder,

           rootInorder + 1, endInorder);

    }

 

   return root;

}

 

BinaryTreeNode* Construct(int* preorder,int* inorder, int length)

{

   if(preorder == NULL || inorder == NULL || length <= 0)

       return NULL;

 

   return ConstructCore(preorder, preorder + length - 1,

       inorder, inorder + length - 1);

}

 


注:《剑指offer》学习总结

二叉树重建 - (先序遍历、中序遍历、后序遍历)

对于一棵二叉树T,我们可以递归定义它的先序遍历,中序遍历,后序遍历:         1、先序遍历  ( PreOrder(T) = T的根节点 + PreOrder(T的左子树) + Pre...

二叉树的先序遍历

  • 2013年07月08日 21:23
  • 165KB
  • 下载

根据先序遍历序列和中序遍历序列重建二叉树

其实这个题是很有趣的,我在学习二叉树的时候,先序遍历、中序遍历、后续遍历,歘歘歘几行代码就递归完了,但是却没考虑过如果得到了遍历序列后通过遍历序列将二叉树还原。后来就做各种笔试题,然后就碰到了这个问题...

c/c++实现利用二叉树的先序遍历和中序遍历序列重建树

先序遍历中第一个结点必然是根结点,利用该结点在中序遍历中的位置,将树分为左子树和右子树,然后递归重建左子树和右子树,代码如下#include using namespace std; struct...

已知中序遍历和先序遍历重建二叉树

// 根据前序遍历和中序遍历求二叉树的结构 // 已知前序遍历的第一个值为根节点 而根节点在中序遍历中的位置就能确定他的左右子树...

【剑指offer】如何通过先序遍历与中序遍历重建二叉树

要用代码实现重建二叉树的话,我们必须了解先序遍历与中序遍历确定二叉树的过程,如给定先序遍历序列为 1, 2, 4, 7, 3, 5, 6, 8,中序遍历序列为4, 7, 2, 1, 5, 3, 8, ...
  • pawnsir
  • pawnsir
  • 2016年07月07日 23:24
  • 313

二叉树的创建(先序创建的)及先序遍历 中序遍历 后序遍历的递归和非递归实现

1.首先是关于二树结点的设计 typedef struct TreeNode *PtrToNode; typedef PtrToNode BinTree; struct TreeNode {    ...
  • cs_hmyy
  • cs_hmyy
  • 2015年10月04日 19:16
  • 458
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:七:重建二叉树(根据先序遍历(或者后序遍历)和中序遍历重建二叉树)
举报原因:
原因补充:

(最多只允许输入30个字)