《算法导论》第6章 堆排序 (3)K路归并

本文深入探讨了《算法导论》中第六章的内容,重点解析了堆排序算法的实现原理及其效率分析。同时,介绍了K路归并算法,阐述了如何将多个已排序的列表有效地合并成一个有序序列,探讨了其在大规模数据处理中的应用和优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



问题描述:

问题来自习题6.5-8 给出一个时间为O(nlgk),用来将k个已排序链表合并为一个排序链表的算法。
此处n为所有输入链表中元素的总数。(提示:用一个最小堆来做k路合并)。

在K路归并问题中,取出最小堆的根元素(最小元素)后,如果此元素没有后继元素(next为空),
则有两种方案:
一、从K路中的另一个链表取出一个元素放到根位置。
二、将堆底部最后一个元素挪到根位置,并将堆大小减一。

此处采用方案二。堆大小每减一,说明K路中某一个链表已处理完。
当堆大小为零时,处理结束。


源码与注释:

// 链表结点类
class Node {
       int value;
       Node next;
}

public class KMerge {

       public static void main(String[] args) {

              // 创建五路链表
              LinkedList<Node> list1 = createList(2, 5, 8, 10);
              LinkedList<Node> list2 = createList(3, 4, 14);
              LinkedList<Node> list3 = createList(9, 11, 13, 15, 18);
              LinkedList<Node> list4 = createList(7, 12, 17, 22, 25);
              LinkedList<Node> list5 = createList(6, 16, 19, 21);
              
              LinkedList<LinkedList<Node>> kLists = new LinkedList<LinkedList<Node>>();
              kLists.add(list1);
              kLists.add(list2);
              kLists.add(list3);
              kLists.add(list4);
              kLists.add(list5);
              
              // 开始归并
              LinkedList<Node> resultList = kMerge(kLists);
              
              for (Node node : resultList) {
                     System.out.print(node.value + ", ");
              }
              System.out.println();
       }
       
       public static LinkedList<Node> kMerge(LinkedList<LinkedList<Node>> kLists) {
              int heapSize = kLists.size();
              Node[] heap = new Node[heapSize + 1];
              
              // 取出K路中每个链表的第一个元素,用来建堆。
              for (int i = 1; i <= heapSize; i++)
                     heap[i] = kLists.get(i - 1).getFirst();
              
              buildMaxHeap(heap, heapSize);
              
              LinkedList<Node> resultList = new LinkedList<Node>();
              while (heapSize > 0) {

                     // 将根位置的最小元素取出到结果中。
                     Node minNode = heap[1];
                     resultList.add(minNode);

                     // 后继为空,则将堆尾元素挪到根位置。
                     // 否则将后继元素添加到堆中。
                     if (minNode.next == null) {
                           heap[1] = heap[heapSize];
                           heapSize -= 1;
                     }
                     else {
                           heap[1] = minNode.next;
                     }

                     // 根位置的堆性质被破坏,重新恢复。
                     minHeapify(heap, heapSize, 1);
              }
              return resultList;
       }

       public static void buildMaxHeap(Node[] heap, int heapSize) {
              for (int i = heapSize / 2; i >= 1; i--)
                     minHeapify(heap, heapSize, i);
       }
       
       public static void minHeapify(Node[] heap, int heapSize, int i) {
              int left = 2 * i;
              int right = 2 * i + 1;
              int min = i;
              
              if (left <= heapSize && heap[left].value < heap[i].value)
                     min = left;
              if (right <= heapSize && heap[right].value < heap[min].value)
                     min = right;
              
              if (min != i) {
                     Node tmp = heap[i];
                     heap[i] = heap[min];
                     heap[min] = tmp;
                     minHeapify(heap, heapSize, min);
              }
       }
       
       public static LinkedList<Node> createList(int... values) {
              LinkedList<Node> list = new LinkedList<Node>();
              Node preNode = null;
              for (int value : values) {
                     Node node = new Node();
                     node.value = value;
                     if (preNode != null)
                           preNode.next = node;
                     list.add(node);
                     preNode = node;
              }
              return list;
       }
       
}


效率分析:

堆的大小为K,调用buildMaxHeap()建堆花费KlgK。剩余元素为N - K个。
每次取出根元素,放入后继元素后,调用maxHeapify()保持堆性质花费lgK。
所以总的时间为KlgK + (N - K)lgK = NlgK。



评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值