不同回文子串数目 hdu 3948

原创 2012年03月22日 13:14:51

将原串反向后接在后面,中间用一个没出现过的字符隔开;

如"abab";k=strlen(str);

连接后变为"abab9baba0"

根据height【】排序后

i   height[i]  子串
0     0              0
1     0              9baba0
2     0             a0
3     1             ab9baba0
4     2             aba0
5     3             abab9baba0
6     0             b9baba0
7     1             ba0
8     2             bab9baba0
9     3             baba0

奇数长度情况:

从2到n-1遍历,第i个所在位置为sa[i],和它对称的在2*k-sa[i]处,求出这2个字符串的公共前缀即为以sa[i]处为中心的回文数目。记录这个长度,如果有重复情况,那么后面求得的前缀减去它。

//不同回文子串数目
#include <iostream>
#include <string>
#include <cmath>
#include <map>
using namespace std;
const int N=210000;
int wa[N],wb[N],wv[N],wsum[N];
int height[N],sa[N],rank[N];
int n;
char str[N];
int f[N][23];
bool vis[N];
int r[N];
int ans;
int cmp(int *r,int a,int b,int l)
{
	return r[a]==r[b] && r[a+l]==r[b+l];
}
void da(int *r,int *sa,int n,int m)
{
	int i,j,p,*x=wa,*y=wb,*t;
	for(i=0;i<m;i++)
		wsum[i]=0;
	for(i=0;i<n;i++)
		wsum[x[i]=r[i]]++;
	for(i=1;i<m;i++)
		wsum[i]+=wsum[i-1];
	for(i=n-1;i>=0;i--)
		sa[--wsum[x[i]]]=i;
	for(j=1,p=1;p<n;j*=2,m=p)
	{
		for(p=0,i=n-j;i<n;i++)
			y[p++]=i;
		for(i=0;i<n;i++)
			if(sa[i]>=j)
				y[p++]=sa[i]-j;
		for(i=0;i<n;i++)
			wv[i]=x[y[i]];
		for(i=0;i<m;i++)
			wsum[i]=0;
		for(i=0;i<n;i++)
			wsum[wv[i]]++;
		for(i=1;i<m;i++)
			wsum[i]+=wsum[i-1];
		for(i=n-1;i>=0;i--)
			sa[--wsum[wv[i]]]=y[i];
		for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
			x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
	}
}
void calheight(int *r,int *sa,int n)
{
	int i,j,k=0;
	for(i=0;i<=n;i++)
		rank[sa[i]]=i;
	for(i=0;i<n;height[rank[i++]]=k)
		for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);
}
int mmin(int x,int y)
{
	return x<y?x:y;
}
void rmqinit(int n)
{
	int i,j,m,k;
	m=floor(log(1.0*n)/log(2.0));
	for(i=1;i<=n;i++)
		f[i][0]=height[i];
	for(i=1;i<=m;i++)
		for(j=n;j>=1;j--)
		{
			f[j][i]=f[j][i-1];
			k=1<<(i-1);
			if(j+k<=n)
				f[j][i]=mmin(f[j][i],f[j+k][i-1]);
		}
}
int get_rmq(int x,int y)
{
	int m,t;
	x=rank[x];
	y=rank[y];
	if(x>y)  
        t=x,x=y,y=t;  
    x++;  
    m=floor(log(1.0*(y-x+1))/log(2.0));  
    return mmin(f[x][m],f[y-(1<<m)+1][m]);  
}


int main()
{
	int T,i,j,k,ca=0,s,t;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%s",str);
		k=strlen(str);
		str[k]='9';
		for(i=0;i<k;i++)
			str[i+k+1]=str[k-i-1];
		str[2*k+1]='0';
		n=2*k+2;
		str[n]='\0';
		for(i=0;i<n;i++)  
			r[i]=(int)str[i]; 
		da(r,sa,n,'z'+1);
		calheight(r,sa,n-1);
		//cout<<str<<endl;
	//	for(i=0;i<n;i++)
		//	cout<<i<<' '<<height[i]<<' '<<str+sa[i]<<endl;
		rmqinit(n-1);
		ans=0;
		memset(vis,0,sizeof(vis));
		s=0;
		for(i=2;i<n;i++)
		{
			s=mmin(s,height[i]);
			if(vis[2*k-sa[i]])
			{
				t=get_rmq(sa[i],2*k-sa[i]);
				if(t>s)
				{
					ans+=t-s;
					s=t;
				}
			}
			else
				vis[sa[i]]=1;
		}
	//	cout<<ans<<endl;
		memset(vis,0,sizeof(vis));
		s=0;
		for(i=2;i<n;i++)
		{
			s=mmin(s,height[i]);
			if(!sa[i])
				continue;
			if(vis[2*k-sa[i]+1])
			{
				t=get_rmq(sa[i],2*k-sa[i]+1);
				if(t>s)
				{
					ans+=t-s;
					s=t;
				}
			}
			else
				vis[sa[i]]=1;
		}
		printf("Case #%d: %d\n",++ca,ans);
	}
	return 0;
}




HDU3948:后缀数组+马拉车(本质不同回文子串统计)

题意:给出一个字符串,求其 本质不同的 回文子串的个数。 如果有小伙伴WA了无数次,请尝试模拟一下aabaa这个串,答案应该是5。(本菜鸡就WA了一晚上) 题解:回文子串可以考虑先...

BZOJ 3672([Apio2014]回文串-回文树)

考虑一个只包含小写拉丁字母的字符串s。我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度。请你求出s的所有回文子串中的最 大出现值。 字符串长度≤300000回文树模板题建立...

HDU 3948

UESTC的神题啊! 主要是去重比较难想 主要思想就是:按sa数组i从2开始枚举到n,pre1记录的是上一次计算过的回文串,所以先与height[i]取小值,代表这次计算重复的回文串,然后与实际的...

hdu 3948后缀树组-4

http://acm.hdu.edu.cn/showproblem.php?pid=3948  题意:求一个给定串所有不同的回文子串个数。。distinct palindrome。。   分析:...

后缀数组(不同的回文字串)hdu3948

调了一上午终于调出来了,这都是什么错误,为什么

hdu 3948 求不同回文串的个数

求一个串中不相同的子串可以用后缀数组求,这题只不过是要求子串是回文串所以也可以用后缀数组求。求不相同的子串的的算法中,对于相邻的两个后缀 i , j . 后缀 j 能产生的子串的个数为len-heig...

hdu 3948 The Number of Palindromes

后缀数组,求不同回文子串的数量 #include #include // hdu 3948 const int MAXN = 200010; int wa[MAXN], wb[MAXN], ...
  • solotzg
  • solotzg
  • 2013年07月28日 16:23
  • 619

spoj 694 求一个字符串中不同子串的个数

SPOJ Problem Set (classical) 694. Distinct Substrings Problem code: DISUBSTR Gi...

HDU 4632 Palindrome subsequence(区间DP 回文子串的个数)

题意略。 思路:设dp[i][j] 为i到j内回文子串的个数。 那么状态转移方程为dp[i][j] = dp[i][j-1] + dp[i+1][j] - dp[i+1][j-1] 如果a[i]...

回文子串的个数

1、题目描述 本题要求统计一个字符串中包含多少个回文子串。首先我们来确定子串的概念:一个字符串的子串,就是指它本身的各个部分。如字符串“aba”的子串有“a”、“b”...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:不同回文子串数目 hdu 3948
举报原因:
原因补充:

(最多只允许输入30个字)