行列式的故事

        当我们由后期的观点来看数学史或科学史,特别是受限于篇幅和深度的时候,经常营造出一种假象,好像历代(甚至不同种族、不同地域的)学者们都朝着一个共同而明确的目标前进,有如接力赛似地一棒传一棒,而造就出今天教科书里的内容。而真相并非如此。只要能够多用一点篇幅,并且多引入一些数学内容,就能表现出更多的真相。

 

        但是历史也确实有其神秘之处;有时候,某些不凡的灵魂彷佛真的能够跨越地理的障碍,又好像某些思维在某个时期确实充斥于「空气中」,许多未能彼此沟通的人同时接受了讯息,而创造出极为类似的成果。

 

        若 n 是正整数,则 n 阶行列式就是将n^2 个数映射成一个数的计算规则;某一个数的一阶行列式就是那个数本身。以下记号是今日的标准:将 n^2 个数排列成正方形,在其左右两侧画上直线(看起来也就是「绝对值」符号)。绝对值记号的「借用」以及把数排列成正方形的写法,是英国人凯莱(Cayley,1821-95)在 1841 年提出的。

 

        虽然前人并没有把数排列成正方形,也没有方阵的名字和观念,却其实已经考虑了所谓的矩阵乘法。早些时候,行列式有两个意义:它既指那 n^2 个数,又指它们依规则算出来的那一个数。所以,柯西(Cauchy, 1789-1857)在 1812 年发表的「行列式乘法性质」,乍看是一句没意义的话:『行列式的乘积相等』,其实就是我们今天所说的|A||B|=|AB| ,其中A和B是阶数相等的方阵,而|AB| 的计算规则,就是先做 A 和B 的矩阵乘法,再算其行列式。我们甚至可以说,柯西的行列式乘法性质「启发」了后来矩阵乘法的规则。矩阵的乘法发生在矩阵诞生之前,数学史是不是很有趣?

 

        中文翻译「行列式」的时候,凯莱的符号已经通行,所以那些数写成了方阵形式,而横排的数称为行,直排的称为列。西方称之为determinant,是「决定性因素」的意思。在大势底定以前,同样的观念和算法有过很多不同的名字,我们不必做语源的考据。而 determinant 之胜出,高斯(Gauss, 1777-1855)那本天才洋溢的《算术研究》肯定是个决定性因素:高斯在书里用了那个字  (1801),并且使用了 2 阶和3 阶情况的「行列式乘法性质」;柯西推广并证明了n 阶的情况。

 

        中文「行列式」强烈暗示它是关于行和列的计算规则,这个非常优异的名字同时指出了算法。就好像中文「微积分」明白指出那是一套包括微分和积分的算法,比原文Calculus 有意义多了。所以课本通常将行列式放在矩阵的章节之中。但是我们现在知道,行列式的发生,原本是某种性质的决定性因素,而且早在它被写成行和列以前。

 

        行列式是n 元一次联立方程式有唯一解的决定性因素,也就是课本里的克拉玛公式。克拉玛(Cramer, 1704-52)在 1750 年发表了这个决定(齐次线性)联立方程组有唯一解、有无穷多组解、无解的一般性方法。那篇论文的主题在探讨「平面上通过若干点的代数曲线」,其实就是插值多项式啦;从已知点坐标求插值多项式系数的一般性方法,就是解联立方程组。所谓的克拉玛公式,写在那篇论文的附录,并无证明。在课本里被当作应用的克拉玛公式,其实是行列式的历史源头。

 

        在克拉玛之后,行列式逐渐成为西欧学术圈内的共同知识。虽然圈内人普遍将克拉玛公式视为行列式的源头,却把开创行列式这门学问的荣誉,归给了范德蒙(Vandermonde, 1735-96) 。这是因为后者在 1770 年代的工作,将行列式从联立方程式抽离出来,当作独立的数学研究对象。范德蒙指出了课本里面列举的那些行列式计算性质,并指出利用余因子化简的算法;但是他并没有使用凯莱的方阵表达形式。

 

        但是在克拉玛论文的一百年后 (1850) ,西欧的学术圈有了新的「发现」。那一年,德国(汉诺威)出版了莱布尼兹(Leibniz, 1646-1716)书信全集,里面有一封1683 年写给罗必达(一个大家熟知的极限法则以他命名)的信,也提出了所谓的克拉玛公式,并且明确地写出三阶行列式的计算规则。更令人惊讶的是,莱布尼兹在信中使用了双足标:他写10+11x+12y=0 ,但那些系数不是十、十一、十二的意思,从后文看出来是 a10、a11 、 a12 的意思。

 

        当西欧和日本的交流更为密切之后,他们又「发现」居然就在莱布尼兹写信给罗必达的几乎同时,在日本被尊为「算圣」的关孝和(Seki Takakazu, 1642-1708)也撰写了完全一样的技术,他不但等同于发现了克拉玛公式,也几乎写出了凯莱的方阵形式。我们相信莱布尼兹和关孝和不曾联络,而他们的前世,会不会都读过卡丹诺(Cardano, 1501-76)的《大术》?因为后来又发现,那本书里隐藏了以二阶行列式解二元一次方程组的法则;卡丹诺只差一点点就要发现克拉玛公式了。

 

        当现代的学术圈发现卡丹诺、莱布尼兹和关孝和的早期思想时,行列式的知识已经完备。所以,这些发现类似于「考古」的发掘,对于我们今日所习的知识架构,并没有发生影响。

 

        行列式、向量和矩阵,各有自己的发源,有它们自己的动机和应用。其中最早发生的是行列式;而行列式与向量、方阵的揉合,则发生于十九世纪的中期。至于它们三者被整合在「线性代数」的架构之内,则已经是距今一百年左右的近期发展了。

 

        有些网络文件把行列式的「最早」发现归功于中国汉朝的《九章》,我相信那是溢美之言。九章的确解了三元一次方程组,但是所用的方法等价于高斯消去法,并不是行列式。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
利用行列式性质求解行列式通常可以通过如下几个步骤进行: 1. 确定行列式的阶数:行列式的阶数是指行列式的行数和列数相等的数目。例如,一个3阶行列式有3行和3列。 2. 根据行列式的定义:行列式是一个数学工具,用于计算矩阵的性质。行列式的值可以通过以下公式计算: - 对于2阶行列式: | a b | | c d | 行列式的值等于 ad - bc。 - 对于3阶行列式: | a b c | | d e f | | g h i | 行列式的值等于 aei + bfg + cdh - ceg - bdi - afh。 - 对于更高阶的行列式,可以使用展开定理进行计算。展开定理是将行列式按照某一行或某一列展开成多个次级行列式的和。在计算次级行列式时,可以继续使用展开定理,直到得到2阶行列式为止。 3. 利用行列式的性质简化计算:行列式有一些性质可以用来简化计算,例如行列式的性质之一是,如果行列式的某一行(或某一列)中所有元素都是0,则该行列式的值为0。此外,行列式的值不受行列互换的影响,即交换行或列的位置不会改变行列式的值。 4. 使用计算工具或编程语言进行计算:行列式的计算可以手动进行,但对于高阶行列式而言,计算过程可能较为复杂和繁琐。因此,可以使用一些计算工具或编程语言进行行列式的计算,例如Matlab、Python中的NumPy等。 综上所述,利用行列式性质求解行列式可以通过确定阶数、应用行列式的定义和性质、以及使用适当的计算工具或编程语言来实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值