关闭

小波变换网文精粹:小波变换和motion信号处理(三)

标签: vectorfunction
3676人阅读 评论(1) 收藏 举报
分类:

小波变换网文精粹:小波变换和motion信号处理(三)

转自:http://www.kunli.info/2011/02/15/fourier-wavelet-motion-signal-1/

三、傅立叶变换基础

        傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于function space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样

                

again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢?

        现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

                

那什么是function正交呢?假设我们有两个函数f(x)和g(x),那是什么?我们遵循vector的思路去想,两个vector求内积,就是把他们相同位置上对应的点的乘积做一个累加。那移过来,就是对每一个x点,对应的f和g做乘积,再累加。不过问题是,f和g都是无限函数阿,x又是一个连续的值。怎么办呢?向量是离散的,所以累加,函数是连续的,那就是…….积分!

            

我们知道函数内积是这样算的了,自然也就容易证明,按照这个形式去写的傅立叶展开,这些级数确实都是两两正交的。证明过程这里就不展开了。好,下一个问题就是,为什么它们是正交basis如此重要呢?这就牵涉到系数的求解了。我们研究了函数f,研究了级数,一堆三角函数和常数1,那系数呢?a0, a1, a2这些系数该怎么确定呢?好,比如我这里准备求a1了。我现在知道什么?信号f(x)是已知的,傅立叶级数是已知的,我们怎么求a1呢?很简单,把方程两端的所有部分都求和cosx的内积,即:

             

然后我们发现,因为正交的性质,右边所有非a1项全部消失了,因为他们和cosx的内积都是0!所有就简化为:

            

这样,a1就求解出来了。到这里,你就看出正交的奇妙性了吧:)

        好,现在我们知道,傅立叶变换就是用一系列三角波来表示信号方程的展开,这个信号可以是连续的,可以是离散的。傅立叶所用的function basis是专门挑选的,是正交的,是利于计算coefficients的。但千万别误解为展开变换所用的basis都是正交的,这完全取决于具体的使用需求,比如泰勒展开的basis就只是简单的非正交多项式。


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:380934次
    • 积分:4761
    • 等级:
    • 排名:第6043名
    • 原创:62篇
    • 转载:79篇
    • 译文:16篇
    • 评论:159条
    友情链接

    最新评论