小波变换网文精粹:小波变换和motion信号处理(三)

转载 2012年03月29日 13:29:43

小波变换网文精粹:小波变换和motion信号处理(三)

转自:http://www.kunli.info/2011/02/15/fourier-wavelet-motion-signal-1/

三、傅立叶变换基础

        傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于function space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样

                

again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢?

        现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

                

那什么是function正交呢?假设我们有两个函数f(x)和g(x),那是什么?我们遵循vector的思路去想,两个vector求内积,就是把他们相同位置上对应的点的乘积做一个累加。那移过来,就是对每一个x点,对应的f和g做乘积,再累加。不过问题是,f和g都是无限函数阿,x又是一个连续的值。怎么办呢?向量是离散的,所以累加,函数是连续的,那就是…….积分!

            

我们知道函数内积是这样算的了,自然也就容易证明,按照这个形式去写的傅立叶展开,这些级数确实都是两两正交的。证明过程这里就不展开了。好,下一个问题就是,为什么它们是正交basis如此重要呢?这就牵涉到系数的求解了。我们研究了函数f,研究了级数,一堆三角函数和常数1,那系数呢?a0, a1, a2这些系数该怎么确定呢?好,比如我这里准备求a1了。我现在知道什么?信号f(x)是已知的,傅立叶级数是已知的,我们怎么求a1呢?很简单,把方程两端的所有部分都求和cosx的内积,即:

             

然后我们发现,因为正交的性质,右边所有非a1项全部消失了,因为他们和cosx的内积都是0!所有就简化为:

            

这样,a1就求解出来了。到这里,你就看出正交的奇妙性了吧:)

        好,现在我们知道,傅立叶变换就是用一系列三角波来表示信号方程的展开,这个信号可以是连续的,可以是离散的。傅立叶所用的function basis是专门挑选的,是正交的,是利于计算coefficients的。但千万别误解为展开变换所用的basis都是正交的,这完全取决于具体的使用需求,比如泰勒展开的basis就只是简单的非正交多项式。


相关文章推荐

小波变换和motion信号处理(三)

从前两篇发布到现在,过去一年多了。当初承诺的主要讲解应用的第三篇迟迟没能出炉的原因主要是这个方法用到了我们组的一篇论文中,所以在论文发表之前,不大方便发出来。倒不是说这个方法有多原创创新,只是这是团队...

Multi-Touch 开发资源汇总

转自:http://www.cnblogs.com/gnielee/archive/2010/09/01/multi-touch-resources-summary.htmlWPF 多点触屏开发WPF...

小波变换完美通俗讲解系列之 (一)

申明:小波变换 完美通俗解读,是《小波变换和motion信号处理》系列中的第一篇。 原始出处为​windstorm的网站http://www.kunli.info/,并非本站原创,但这位大师深入浅出...

小波变换理论讲解

文中所用代码可到此下载:http://www.codeforge.cn/read/244807/waveback.m__html 下面先对小波变换的基本理论进行阐述,再结合程序及运行结果对其更深入地...

小波变换和motion信号处理(二)

这是《小波变换和motion信号处理》系列的第二篇,深入小波。第一篇我进行了基础知识的铺垫,第三篇主要讲解应用。 在上一篇中讲到,每个小波变换都会有一个mother wavelet,我们称之为母小波...

小波变换网文精粹:小波变换和motion信号处理(一)

小波变换网文精粹:小波变换和motion信号处理(一) 转自:http://www.kunli.info/2011/02/15/fourier-wavelet-motion-signal-1/ 一...

小波变换网文精粹:小波变换和motion信号处理(十四)(全文完)

小波变换网文精粹:小波变换和motion信号处理(十四) 转自:http://www.kunli.info/2012/04/08/fourier-wavelet-motion-signal-3/ ...

小波(wavelet)变换的最简单应用—趋势挖掘

小波变换和motion信号处理(一) http://www.kunli.info/2011/02/15/fourier-wavelet-motion-signal-1/  小波变换和motion信号处...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)