关闭

功率谱

529人阅读 评论(0) 收藏 举报
分类:

     功率谱估计是数字信号处理的主要内容之一主要研究信号在频域中的各种特征目的是根据有限数据在频域内提取被淹没在噪声中的有用信号

简介:

周期性连续信号x(t)的频谱可表示为离散的非周期序列Xn,它的幅度频谱的平方│Xn│2所排成的序列就被称之为该周期信号的功率谱
  周期信号的离散频谱Xn由傅里叶变换公式算出
  T+t0
  Xn=(1/T)∫x(t)ej(2πnt/T)dt
  t0
  其中T表示周期信号x(t)的周期1/T谓之基频n为离散频谱的自变量仅取整数值代表基频的倍数
  一般情况下离散频谱Xn是一个复数可用模│Xn│及幅角θn表示为 Xn=│Xn│ejθn,两者就分别称之为幅度频谱及相位频谱例如可以算出幅度为1平均值为零的周期性方脉冲的幅度频谱为
  │Xn│=2/πn, n=奇数
  =0 其余
  于是它的功率谱就是
  │Xn│2=4/(πn)2 n=奇数
  =0 其余

傅立叶级数提出后首先在人们观测自然界中的周期现象时得到应用19世纪末Schuster提出用傅立叶级数的幅度平方作为函数中功率的度量并将其命名为周期图periodogram这是经典谱估计的最早提法这种提法至今仍然被沿用只不过现在是用快速傅立叶变换FFT来计算离散傅立叶变换DFT用DFT的幅度平方作为信号中功率的度量


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:180153次
    • 积分:2850
    • 等级:
    • 排名:第12522名
    • 原创:96篇
    • 转载:82篇
    • 译文:2篇
    • 评论:4条
    最新评论