题目:统计一个数字:在排序数组中出现的次数。
举例说明
例如输入排序数组{ 1, 2, 3, 3, 3, 3, 4, 5}和数字3 ,由于3 在这个数组中出现了4 次,因此输出4 。
解题思路
利用改进的二分算法。
如何用二分查找算法在数组中找到第一个k,二分查找算法总是先拿数组中间的数字和k作比较。如果中间的数字比k大,那么k只有可能出现在数组的前半段,下一轮我们只在数组的前半段查找就可以了。如果中间的数字比k小,那么k只有可能出现在数组的后半段,下一轮我们只在数组的后半乓查找就可以了。如果中间的数字和k 相等呢?我们先判断这个数字是不是第一个k。如果位于中间数字的前面一个数字不是k,此时中间的数字刚好就是第一个k。如果中间数字的前面一个数字也是k,也就是说第一个k肯定在数组的前半段, 下一轮我们仍然需要在数组的前半段查找。
同样的思路在排序数组中找到最后一个k。如果中间数字比k大,那么k只能出现在数组的前半段。如果中间数字比k小,k就只能出现在数组的后半段。如果中间数字等于k呢?我们需要判断这个k是不是最后一个k,也就是中间数字的下一个数字是不是也等于k。如果下一个数字不是k,则中间数字就是最后一个k了:否则下一轮我们还是要在数组的后半段中去查找。
代码实现
public class Test38 {
/**
* 找排序数组中k第一次出现的位置
*
* @param data
* @param k
* @param start
* @param end
* @return
*/
private static int getFirstK(int[] data, int k, int start, int end) {
if (data == null || data.length < 1 || start > end) {
return -1;
}
int midIdx = start + (end - start) / 2;
int midData = data[midIdx];
if (midData == k) {
if (midIdx > 0 && data[midIdx - 1] != k || midIdx == 0) {
return midIdx;
} else {
end = midIdx - 1;
}
} else if (midData > k) {
end = midIdx - 1;
} else {
start = midIdx + 1;
}
return getFirstK(data, k, start, end);
}
/**
* 找排序数组中k最后一次出现的位置
*
* @param data
* @param k
* @param start
* @param end
* @return
*/
private static int getLastK(int[] data, int k, int start, int end) {
if (data == null || data.length < 1 || start > end) {
return -1;
}
int midIdx = start + (end - start) / 2;
int midData = data[midIdx];
if (midData == k) {
if (midIdx + 1 < data.length && data[midIdx + 1] != k || midIdx == data.length - 1) {
return midIdx;
} else {
start = midIdx + 1;
}
} else if (midData < k) {
start = midIdx + 1;
} else {
end = midIdx - 1;
}
return getLastK(data, k, start, end);
}
/**
* 题目:统计一个数字:在排序数组中出现的次数
* @param data
* @param k
* @return
*/
public static int getNumberOfK(int[] data, int k) {
int number = 0;
if (data != null && data.length > 0) {
int first = getFirstK(data, k, 0, data.length - 1);
int last = getLastK(data, k, 0, data.length - 1);
if (first > -1 && last > -1) {
number = last - first + 1;
}
}
return number;
}
public static void main(String[] args) {
// 查找的数字出现在数组的中间
int[] data1 = {1, 2, 3, 3, 3, 3, 4, 5};
System.out.println(getNumberOfK(data1, 3)); // 4
// 查找的数组出现在数组的开头
int[] data2 = {3, 3, 3, 3, 4, 5};
System.out.println(getNumberOfK(data2, 3)); // 4
// 查找的数组出现在数组的结尾
int[] data3 = {1, 2, 3, 3, 3, 3};
System.out.println(getNumberOfK(data3, 3)); // 4
// 查找的数字不存在
int[] data4 = {1, 3, 3, 3, 3, 4, 5};
System.out.println(getNumberOfK(data4, 2)); // 0
// 查找的数字比第一个数字还小,不存在
int[] data5 = {1, 3, 3, 3, 3, 4, 5};
System.out.println(getNumberOfK(data5, 0)); // 0
// 查找的数字比最后一个数字还大,不存在
int[] data6 = {1, 3, 3, 3, 3, 4, 5};
System.out.println(getNumberOfK(data6, 0)); // 0
// 数组中的数字从头到尾都是查找的数字
int[] data7 = {3, 3, 3, 3};
System.out.println(getNumberOfK(data7, 3)); // 4
// 数组中的数字从头到尾只有一个重复的数字,不是查找的数字
int[] data8 = {3, 3, 3, 3};
System.out.println(getNumberOfK(data8, 4)); // 0
// 数组中只有一个数字,是查找的数字
int[] data9 = {3};
System.out.println(getNumberOfK(data9, 3)); // 1
// 数组中只有一个数字,不是查找的数字
int[] data10 = {3};
System.out.println(getNumberOfK(data10, 4)); // 0
}
}