【剑指Offer学习】【面试题45:圆圈中最后剩下的数字(约瑟夫环问题)】

题目:0, 1, … , n-1 这n个数字排成一个圈圈,从数字0开始每次从圆圏里删除第m个数字。求出这个圈圈里剩下的最后一个数字。


解题思路

第一种:经典的解法, 用环形链表模拟圆圈。
  创建一个总共有n 个结点的环形链表,然后每次在这个链表中删除第m 个结点。

代码实现

public static int lastRemaining(int n, int m) {
    if (n < 1 || m < 1) {
        return -1;
    }

    List<Integer> list = new LinkedList<>();
    for (int i = 0; i < n; i++) {
        list.add(i);
    }

    // 要删除元素的位置
    int idx = 0;
    // 开始计数的位置
    int start = 0;

    while (list.size() > 1) {

        // 只要移动m-1次就可以移动到下一个要删除的元素上
        for (int i = 1; i < m; i++) {
            idx = (idx + 1) % list.size(); // 【A】
        }

        list.remove(idx);

        // 确保idx指向每一轮的第一个位置
        // 下面的可以不用,【A】已经可以保证其正确性了,可以分析n=6,m=6的第一次删除情况
    //  if (idx == list.size()) {
    //      idx = 0;
    //  }
    }

    return list.get(0);
}

第二种:分析法
  首先我们定义一个关于n 和m 的方程町矶时,表示每次在n 个数字0,1, … , n-1中每次删除第m 个数字最后剩下的数字。
  在这n个数字中, 第一个被删除的数字是(m-1)%n. 为了简单起见,我们把(m- 1)%n 记为k,那么删除k之后剩下的n-1个数字为0, 1, … , k-1,k+1, … , n-1,并且下一次删除从数字k+1开始计数。相当于在剩下的序列中, k+1排在最前面,从而形成k+1, .. . , n- 1, 0, I, … , k-1 。该序列最后剩下的数字也应该是关于n 和m 的函数。由于这个序列的规律和前面最初的序列不一样(最初的序列是从0 开始的连续序列),因此该函数不同于前面的函数,记为f’(n-1,m)。最初序列最后剩下的数字f(n, m)一定是删除一个数字之后的序列最后剩下的数字,即f(n, m)=f’(n-1, m)。
  接下来我们把剩下的这n-1个数字的序列k-1, …, n-1, 0, 1, … , k-1做一个映射,映射的结果是形成一个从0 到n-2的序列:
  
这里写图片描述

代码实现

public static int lastRemaining2(int n, int m) {
    if (n < 1 || m < 1) {
        return -1;
    }

    int last = 0;
    for (int i = 2; i <=n ; i++) {
        last = (last + m)%i;
    }

    return last;
}

完整代码

import java.util.LinkedList;
import java.util.List;

public class Test45 {
    public static int lastRemaining(int n, int m) {
        if (n < 1 || m < 1) {
            return -1;
        }

        List<Integer> list = new LinkedList<>();
        for (int i = 0; i < n; i++) {
            list.add(i);
        }

        // 要删除元素的位置
        int idx = 0;
        // 开始计数的位置
        int start = 0;

        while (list.size() > 1) {

            // 只要移动m-1次就可以移动到下一个要删除的元素上
            for (int i = 1; i < m; i++) {
                idx = (idx + 1) % list.size(); // 【A】
            }

            list.remove(idx);

            // 确保idx指向每一轮的第一个位置
            // 下面的可以不用,【A】已经可以保证其正确性了,可以分析n=6,m=6的第一次删除情况
        //  if (idx == list.size()) {
        //      idx = 0;
        //  }
        }

        return list.get(0);
    }

    public static int lastRemaining2(int n, int m) {
        if (n < 1 || m < 1) {
            return -1;
        }

        int last = 0;
        for (int i = 2; i <=n ; i++) {
            last = (last + m)%i;
        }

        return last;
    }

    public static void main(String[] args) {
        test01();
        System.out.println();
        test02();
    }

    private static void test01() {
        System.out.println(lastRemaining(5, 3)); // 最后余下3
        System.out.println(lastRemaining(5, 2)); // 最后余下2
        System.out.println(lastRemaining(6, 7)); // 最后余下4
        System.out.println(lastRemaining(6, 6)); // 最后余下3
        System.out.println(lastRemaining(0, 0)); // 最后余下-1
    }

    private static void test02() {
        System.out.println(lastRemaining2(5, 3)); // 最后余下3
        System.out.println(lastRemaining2(5, 2)); // 最后余下2
        System.out.println(lastRemaining2(6, 7)); // 最后余下4
        System.out.println(lastRemaining2(6, 6)); // 最后余下3
        System.out.println(lastRemaining2(0, 0)); // 最后余下-1
    }
}

运行结果

这里写图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值