看机器学习如何还原图像色彩

2017年12月27日 10:03:42

原文:Java Machine Learning for Image Color Reduction
作者:Klevis Ramo
译者:Teixeira10

【译者注】在本文中,作者提出了使用k-means算法来对图像进行色彩还原,介绍算法的步骤,同时应用在图像上,通过对比还原前后的图像,来证明k-means算法的有效性。以下为译文:

k-means是机器学习中最著名、最广泛使用的算法之一。在这篇文章中,将使用k-means算法来减少图像上的颜色(但不减少像素),从而也减少了图像的大小。在这个领域不需要任何基础知识,因为可执行应用程序文件(大小为150MB,这是由于长时间的Spark依赖)已经提供了友好的用户界面。所以你可以很容易地用不同的图像来做实验。在GitHub上有完整可用的执行代码。

K-Means 算法

k-mean算法是一种非监督型学习算法,将相似的数据分成不同的类别或集群。它是无监督型算法,因为数据没有被标记,而且算法不需要对相似数据进行分类的反馈(可能是预期类别的数量——稍后再讨论)。

应用

k- means算法的一些应用包括客户服务、集群计算、社交网络和天文数据分析。

客户服务
假设有大量与客户相关的数据,并且希望更多地了解所拥有的客户类型,从而可以更好地为特定群体服务。也许你要生产牛仔裤和t恤,所以你需要在一个特定的国家将人以身材大小进行分组,这样你就能知道生产什么尺寸更合适。

集群计算
从性能角度来看,将某些计算机分组在一起比较好;例如,从网络的角度来看,交换机适合聚集在一起工作,或者提供相似的计算服务。K-means算法可以将相似功能的计算机分在一组,这样就可以进行更好的布局和优化。

社交网络
在社交网络中,你可以通过客户关系、偏好、相似性等来对他们进行分组,并从营销的角度更好地对客户进行定位。基于提供的数据的输入,k-means算法可以帮助我们从不同的角度对相同的数据进行分类。

天文数据分析
k-means也用于了解星系的形成,以及在天文数据中寻找内聚性。

它是如何工作的

k-means算法有两个步骤。假设把数据分成四组,执行以下步骤。

注意:在开始任何步骤之前,k-means算法会从数据中随机抽取三个样本,称为聚类中心。

1.它检查每一个数据样本,会根据它们与开始随机选择的聚类中心的相似程度,来对它们进行分类。

2.它使聚类中心与相似的同类点更接近(第1步的分组)。

重复这些步骤,直到聚类中心没有显著的移动。下面使用简单数据进行算法执行。



步骤1
现在继续解释步骤1是如何实现的。如果你不熟悉多维特性数据,请参见这里

首先来介绍一些变量:

k:集群的数量

Xij:示例i的第j个特征值

μij:示例i的第j个特征的聚类中心(类似于X,因为聚类中心是随机选择的)

在这个步骤中,通过迭代,计算它们与聚类中心的相似度,并将它们放入合适的类别中。更确切地说,这是通过一个样本的欧几里得距离来计算的,并从最微小的距离中选取中心。由于中心点是随机选择的,因此将所有特征点与中心点的欧几里德距离相加。



或者,更简化,计算量更少:



步骤2
从图上看,这一步将中心点向步骤1中相似的分组进行移动。更准确地说,就是取所有与中心点相似或属于该分组的点的平均值(步骤1的分组),来计算每个中心的新位置。

例如,如果有4个集群和第1步骤之后的103个示例,那么有以下结果:

μ1 = 20表示标号1-20示例的特征中心是20
μ2=10 表示标号21-31示例的特征中心是10
μ3=30表示标号32-62示例的特征中心是30
μ4=40 表示标号63-103示例的特征中心是40

新的计算方法如下:



这是所有数据的平均值,类似于一个特定的中心。

重复,重复,重复…何时停止?

重复第1步和第2步,直到如图形上显示的,中心向数据集群移动的越来越近,才会得出新的中心。该算法会一直运行,直到对结果满意时,就需要明确地告诉它,这样它就可以停止了。一种方法是,当迭代时,中心体不会在图中移动,或者它的移动非常少。形式上说,可以计算成本函数,这基本上就是在步骤1中所计算的平均值:



μc是Xi的中心值。每个示例都可以是不同组或中心的一部分。每次迭代成本都会与之前的成本相比较,如果变化真的很低,就停止它。例如,如果改进(成本函数的差异)是0.00001(或者其他认为合适的值),那就可以停止了,因为继续下去就没有意义了。

算法会出错吗?

通常不会出错,但众所周知,k-means算法仅能达到局部最优,而不是全局最优。在这种情况下,k-means算法无法发现更加明显的分组,如下图所示:



幸运的是,解决方案相当简单——只要用k-means算法多运行几次,然后选择最好的结果就好了。这个解决方案很有帮助,因为在一开始,随机初始化k-means算法,比方说,运行10次,那么会得出局部最优解。当然,这增加了运行时间,因为它运行了很多次,却只需要一个结果。另一方面,完全可以在并行的甚至是不同的集群上运行算法,所以通常可以作为一个工作解决方案。

当然,k-means算法比我所介绍的要多,所以强烈推荐这篇文章,以获得更深入的见解。

算法的执行和结果

在本节中,将运行应用程序(也可以下载代码),并通过一些细节来了解k-means算法如何进行色彩还原。

色彩还原

需要说明的是,k-means算法不是减少图像上的像素,而是通过将相似的颜色组合在一起,以此来减少图像的颜色数量。一个正常的图像通常有几千个甚至更多的颜色,所以减少颜色的数量可以显著减少文件的大小。

为了说明减少颜色的数量有助于减少图像大小,来看一个例子。假设有一个1280x1024像素的图像,对于每个像素,有一个简单的颜色表示(RGB 24位,8位红,8位绿色,8位蓝色)。总而言之,需要1280 * 1024 * 24 = 31457280位或30MB来表示图像。现在,把整体颜色减到16种,这意味着不需要24位像素,而是4位来代表16种颜色。现在,有1280 * 1024 * 4 = 5MB,这也就少占了6倍的内存。当然了,图像看起来不会像之前那样完美(现在只有16种颜色),但肯定能找到一个合适的图像。

执行和结果

执行算法的最简单方法是下载JAR包,并使用自己的图像来执行(需要安装Java)。我的电脑大约需要花一分钟的时间来运行,使颜色减少到16种(高CPU和内存会更好,因为Spark是并行运行的)。在用户界面中,可以选择想要尝试的图像文件,也可以选择减少图像上颜色的数量。下面是一个用户界面和结果的例子:



可以注意到,文件大小减少了4倍,但最终的图像看起来并不是那么糟糕。多运行几次它可能会带来更好的效果。再试试24种颜色:



这看起来明显好一些,尺寸也没有增加多少(只有0.08 MB)。似乎在24到28之间是这个图像最好的视觉效果。

尽管结果看起来不错,但选择最佳图像是一项手工任务。毕竟,我们正在执行和挑选最适合视觉的图像。

相信这个问题可以用多种方法来解决。

其中一个解决方案是简单地计算原始图像上的所有颜色,并在此基础上,定义用于图像的颜色数量,同时仍然保持图像看起来不错。这一过程可以通过使用像线性回归这样的机器学习预测算法来完成。通过赋予图像不同的颜色来训练算法,同时,对于每个图像来说,它们看起来仍然很好。在给出了一些重要的示例之后,该算法根据不同的图像学习了如何减少到最佳颜色数量。现在是时候让线性回归算法预测下一个图像的颜色会减少多少了。

可以下载代码并在Java IDE上运行它。当然,如果不想在源代码中运行,只需下载代码并运行maven:mvn clean install exec:java


1月13日,SDCC 2017之数据库线上峰会即将强势来袭,秉承干货实料(案例)的内容原则,邀请了来自阿里巴巴腾讯微博网易等多家企业的数据库专家及高校研究学者,围绕Oracle、MySQL、PostgreSQL、Redis等热点数据库技术展开,从核心技术的深挖到高可用实践的剖析,打造精华压缩式分享,举一反三,思辨互搏,报名及更多详情可点击此处查看。
这里写图片描述

Python学习、机器学习(图像处理)、网络渗透、考研杂记

最近一段时间的精力分配有点混乱,关注的东西也比较乱,现在整理一下。 主要有四大类:Python学习、机器学习(图像处理)、网络渗透、考研相关 先来说说Python的学习: ...
  • weixin_38263568
  • weixin_38263568
  • 2017年05月25日 00:04
  • 413

图像分类 | 深度学习PK传统机器学习

原文:Image Classification in 5 Methods  作者:Shiyu Mou  翻译:何冰心 图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题...
  • jaccen
  • jaccen
  • 2017年05月20日 07:55
  • 1717

机器学习基础知识、与图像处理等技术的关系

在36氪上看到一篇很好的关于机器学习的文章,对机器学习与各个领域的结合讲得非常清晰。 现小结一下如下。 基本定义: 机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律...
  • qq_23617681
  • qq_23617681
  • 2016年04月15日 13:57
  • 1300

图像处理+机器学习相关资源整合

转载自:http://blog.csdn.net/berguiliu/article/details/10356919 http://www.cnblogs.com/tornadomeet/arch...
  • jdbc
  • jdbc
  • 2015年09月04日 08:08
  • 2814

牛人的博客(图像处理,机器视觉,机器学习等)

1、小魏的修行路  http://blog.csdn.net/xiaowei_cqu   2、晨宇思远(邹宇华 北京航空航天大学) http://blog.csdn.net/chenyusiyu...
  • LZY272942518
  • LZY272942518
  • 2016年04月20日 13:56
  • 6960

图像处理+机器学习相关资源整合

转载自:http://blog.csdn.net/berguiliu/article/details/10356919 http://www.cnblogs.com/tornadomeet/archi...
  • signal926
  • signal926
  • 2015年01月30日 21:51
  • 3575

图像处理-机器学习总结

一、课程及书单 课程: 图像处理、矩阵论、模式识别、机器学习、最优化、凸优化、高性能计算 书单: 1、    数字图像处理的MATLAB实现(第2版)(国外计算机科学经典教材)(美)冈萨雷斯,(美)伍...
  • u011314012
  • u011314012
  • 2016年03月26日 17:51
  • 4557

张长水:机器学习与图像识别

http://www.cbdio.com/BigData/2015-12/23/content_4371155.htm 本讲座选自清华大学自动化系张长水老师于2015年11月...
  • mustar_2017
  • mustar_2017
  • 2017年06月10日 10:13
  • 350

翻译:结合卫星图像和机器学习预测贫穷

结合卫星图像和机器学习预测贫穷(翻译) 将自己最近读的文献翻译整理一下,一方面和大家分享,另一方面便于自己以后回头来看看。 关于经济生计的可靠的数据在发展中国家依然缺乏,这妨碍了去研究这些结果并制...
  • pandamax
  • pandamax
  • 2017年01月08日 20:49
  • 943
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:看机器学习如何还原图像色彩
举报原因:
原因补充:

(最多只允许输入30个字)