嘴角定位

原创 2015年07月07日 15:09:57
人脸五官中,关于嘴角定位的文献相对眼睛定位来讲要少很多,定位的方法也很不相同。作者结合工作中遇到的问题,在此按照定位过程,简要阐述如下:

嘴角定位一般分为,胡子区域去除,嘴巴区域获取,嘴角定位

1. 胡子区域去除

  胡子的干扰,是嘴角定位最大的难题,特别是中东一些国家,留胡子人极多。而目前很多文献中,并没有提出此问题的解决方法。王罡的《基于单张正面人脸照片的三维人脸自动建模方法研究》中提到用BR加权G色对比法,来去掉胡须部分。具体来讲,是根据“B分量(蓝色)和G分量(绿色)在唇色中的分布比较相近,但在肤色中,G分量的分布则明显大于B分量;在肤色和唇色中,R分量(红色)和B分量分布相对稳定,G分量是造成色度分布差异的主要元素”。

                

Fig1 原始图像            Fig2 胡子去除后

      实际定位中,我们只需要对人脸图像的下半部分进行检测即可。

 

2.嘴巴区域获取

 (1)嘴巴特征增强

       想通过嘴巴的灰度和肤色的差异,来获取嘴巴的区域还是比较困难的。因为实际情况下,受光照和个体的差异,并不是每个人的唇色和肤色都有明显差异。因此需要突出嘴巴区域的特征,增加对比度。作者采用的是Fisher变换的方法,分别采集两组样本(肤色和嘴唇),相当于求类间距离最大的原理,来寻找肤色和纯色的最有分类矩阵。

                                   

          Fig3 Fisher增强                                           Fig4 Fisher增强

       上排图像是原始图像,下排是嘴巴增强的效果。       

(2)消除光照影响

       由于光照条件不固定,会给嘴巴区域的获取,以及后续嘴角精确定位带来很大的影响。作者采用Gabor的方法来处理,效果良好。

 Fig5 Gabor变换

(3)嘴巴区域二值化

       作者尝试采用过一些图像二值化方法来对嘴巴区域提取,包括OTSU以及基于边缘特征信息的二值化方法,但是经过测试都不稳定。最终采用的是类似于“眼睛定位”文章中提到的方法,效果稳定而且效果很好。

                      Fig 6 OTSU二值化结果

Fig 7 基于边缘信息保留的图像二值化

       图7中的效果明显优于OTSU算法,但是它容易受嘴巴姿态等的影响,造成二值化区域较大,这给后续角点的筛选带来不便。

Fig8 基于Gabor的嘴巴区域二值化

3.嘴角定位

       获得一个尽量“好”的嘴巴区域,会给嘴角定位准确性带来很大方便。作者在嘴巴区域内,采用角点检测和嘴巴模板相结合的方法,来精确定位嘴角位置。

       角点检测有很多现成的方法,比如Susan和Harris角点检测。作者选择的后者,但是检点检测后有很多候选点,如何准确筛选呢?我们可以嘴巴的形状,加入边缘信息进来判断。因为从真正的嘴角位置出发,同事沿着边缘往右或往左,得到的边缘点数应该最多。

4.定位结果

 

 

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

嘴角定位

转自:http://www.cnblogs.com/ImageVision/archive/2012/03/21/2408506.html 人脸五官中,关于嘴角定位的文献相对眼睛定位来讲要少很多,定...

嘴角定位

http://www.cnblogs.com/ImageVision/archive/2012/03/21/2408506.html 人臉五官中,關於嘴角定位的文獻相對眼睛定位來講要少很多,...

叶笑嘴角露出来一个不知是什么意味的笑容

对了,回天玉莲有个限制不知道姑娘知不知道?那就是此莲也唯有处子之身服用才能发挥效力……”     叶笑嘴角露出来一个不知是什么意味的笑容,道:“造化弄人啊,一个女人修炼到能够服用回天玉莲的时候…...

扯痛嘴角的伤感空间日志发布:受够了,走了,承诺哪去了?

扯痛嘴角的伤感空间日志发布:受够了,走了,承诺哪去了? — 扯痛嘴角的伤感空间日志发布:受够了,走了,承诺哪去了? 很多人分手都是因为, 累了、烦了、受够了、伤心了,被抛弃了。 分手!恋...

室内定位卡尔曼滤波KNN

  • 2017-07-05 16:52
  • 69KB
  • 下载

Halcon-各种定位方法

  • 2016-06-18 17:31
  • 3.63MB
  • 下载

IAR STM32 函数和变量的绝对地址定位

能否利用函数和变量的绝对定位,实现程序的模块化更新。也就是说,如果我要改变某个函数,只需要更新flash里面一个局部,也许只需要更新几百个字节,而无须重新下载整个上百K的程序。经过查找资料和反复实验,...

css-4.定位

  • 2017-05-11 21:06
  • 134KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)