三维立体电视图像生成方法

原创 2015年07月07日 15:10:01
三维立体电视越来越受到人们的重视,不少商家也推出了一些相关产品。那这些究竟是怎么做出来的呢?作者就接触过的知识点,在这里向大家浅薄的介绍一二。

国内外研究现状

三维立体电视,最好的方式是用两台摄像机按照一定角度,同时拍摄当前的场景,然后将这两个同一时刻拍摄的图像整合叠加,就会形成一个肉眼看起来有点错位模糊的图像,我们称这两张图像分别为左图像和右图像。如果配上特制眼镜或者电视屏本身就有相应设计,我们就可以看到立体电视图像了。但是,实际中往往用两台并按一定角度拍摄,有很多困难。因此,实际中多是只有一个图像,想办法来生成另一个对应的图像。

国内关于这方面的文献很少,而且也是很不精确的解法。比如,假设绝大部分的场景图像,都是图像上半部分是远景,下半部分是近景,然后按照从上到下,逐步给图像一个向左或向右的递增位移,但是并不是所有场景都符合这样的情况。另外,还有根据心里和生理因素,给图像加入随即偏移因子的方法,同样也精度不理想。

二 立体图像生成方法

1 图像分割

目前,用一张图像生成另一张图像,比较精确的方法是,用图像分割的方法,把图像中的各个区域取出来,然后再根据图像的深度,对每个部分进行相应位移,这样的图像效果就合情合理了。

图像分割也有很多方法,作者采用的是基于粗糙集理论的原理,具体实现过程在此不再详述,如有感兴趣的可以留言讨论。直接上图吧:

                 

     

                 Fig1 原始图像                        Fig2 加了深度的分割后图像

2 深度图

分割后的图像,并不能直接用来做左图像或右图像。我们还需要根据图像类型,对它每个分割的块赋予一个深度值。一般的,我们可以通过对图像做主直线检测,来判断图像的深度方式。比如第一排图可以检测出一条横线(中间那条路),那么判断它是属于上面远景,下方为近景的类型。这个完全由直线方向来定,如果无法判断时,就默认图像属于上方远景,下方近景类型。

3 分割块的位移

位移公式:

xc is the horizontal coordinate of the intermediate view. Z is depth value of current pixel, f is camera focal length and t x is eye distance.
4 立体图像生成
调查发现,大约70%的人属于右眼灵敏,20%的属于左眼灵敏,10%的人左右眼都差不多。因此,我们可以将原始图像当做右图像,我们通过分割和深度来生成左图像。

将图三和图四合成,就生成了对应的立体图:

                         图5 立体图

其他例子:

     

版权声明:本文为博主原创文章,未经博主允许不得转载。

多视角立体影像匹配三维重建---- visualSFM的使用方法

利用多张影像对小物体进行拍摄,进而进行三维重建,是计算机视觉中的重要问题之一。 目前对此研究最全面的网站是:http://vision.middlebury.edu/mview/eval/  目前...

三维立体图像制作大师

  • 2015年03月11日 09:34
  • 1.33MB
  • 下载

多视角立体影像匹配三维重建---- visualSFM的使用方法

利用多张影像对小物体进行拍摄,进而进行三维重建,是计算机视觉中的重要问题之一。 目前对此研究最全面的网站是:http://vision.middlebury.edu/mview/eval/  ...

基于图像分割的立体匹配方法

1.绪论 立体匹配是三维重建系统的关键步骤,并且作为一种非接触测量方法在工业以及科研领域具有重要的应用价值。为了完成匹配工作以及获取场景的稠密视差图,可以通过构建能量函数对应立体匹配的约束条件。...

OpenCV在未知相机内参数情况下的立体图像矫正方法

很多时候我们不知道摄像机的内参数矩阵,并且我们也不太关注内参数到底是多少,因为我们仅仅关心如何得到两幅图像的稠密匹配,或者两幅图像的差别——例如我们只想计算两幅图像的视差图,或者说得到两幅立体图像对的...

OpenCV在未知相机内参数情况下的立体图像矫正方法及注意事项

很多时候我们不知道摄像机的内参数矩阵,并且我们也不太关注内参数到底是多少,因为我们仅仅关心如何得到两幅图像的稠密匹配,或者两幅图像的差别——例如我们只想计算两幅图像的视差图,或者说得到两幅立体图像对的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:三维立体电视图像生成方法
举报原因:
原因补充:

(最多只允许输入30个字)