二叉树的创建、前序遍历、中序遍历、后序遍历

转载 2007年10月09日 20:04:00
// BTree.cpp : Defines the entry point for the console application.
/*
 作者:成晓旭
 时间:2001年7月2日(9:00:00-14:00:00)
 内容:完成二叉树的创建、前序遍历、中序遍历、后序遍历
 时间:2001年7月2日(14:00:00-16:00:00)
 内容:完成二叉树的叶子节点访问,交换左、右孩子
*/
#include "stdafx.h"
#include "stdlib.h"

#define  MAX_NODE 100
#define  NODE_COUNT1 8
#define  NODE_COUNT2 15

int TreeValue0[NODE_COUNT1][2] = {{'0',0},{'D',1},{'B',2},{'F',3},{'A',4},{'C',5},{'E',6},{'G',7}};
int TreeValue1[NODE_COUNT1][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7}};
int TreeValue2[NODE_COUNT2][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7},{'H',8},{'I',9},{'J',10},{'K',11},{'L',12},{'M',13},{'N',14}};
struct BTree
{
 int data;
 int order;
 BTree *lchild;
 BTree *rchild;
};

void Swap(int *p1,int *p2)
{
 int t;
 t = *p1;
 *p1 = *p2;
 *p2 = t;
}
/*
function CreateBTree()功能:创建一颗二叉树,并返回一个指向其根的指针
*/
BTree *CreateBTree(int data[][2],int n)
{
 BTree *Addr[MAX_NODE];
 BTree *p,
    *head; 
 int nodeorder,//节点序号
  noderoot, //节点的双亲
  i;
 if(n>MAX_NODE)
 {
  printf("参数错误!/n");
  return(0);
 }
 for(i=1;i<=n;i++)
 {
  p = (BTree *)malloc(sizeof(BTree));
  if(p==NULL)
  {
   printf("内存溢出错误!/n");
   return(0);
  }
  else
  {
   p->data = data[i][0];
   p->lchild = NULL;
   p->rchild = NULL;
   nodeorder = data[i][1];
   p->order = nodeorder;
   Addr[nodeorder] = p;
   if(nodeorder>1)
   {
    noderoot = nodeorder/2;
    if(nodeorder %2 == 0)
     Addr[noderoot]->lchild = p;
    else
     Addr[noderoot]->rchild = p;
   }
   else
    head = p;
   printf("BTree[%d] = %c/t",p->order,p->data);
  }
  //free(p);
 }
 return(head);
}

/*
function FirstOrderAccess0()功能:实现二叉树的前序遍历
二叉树前序遍历的思想:
 从根节点开始,沿左子树一直走到没有左孩子的节点为止,
依次访问所经过的节点,同时所经[节点]的地址进栈;
 当找到没有左孩子的节点时,从栈顶退出该节点的双亲的
右孩子,此时,此节点的左子树已访问完毕;
 在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void FirstOrderAccess0(BTree * header)
{
 BTree * stack[MAX_NODE];
 BTree *p;
 int top;
 top = 0;
 p = header;
 do
 {
  while(p!=NULL)
  {
   printf("BTree[%d] = %c/t",p->order,p->data);//访问节点P
   top = top+1;
   stack[top] = p;
   p = p->lchild;//继续搜索节点P的左子树
  }
  if(top!=0)
  {
   p = stack[top];
   top = top-1;
   p = p->rchild;//继续搜索节点P的右子树
  }
 }while((top!=0)||(p!=NULL));
}
/*
function FirstOrderAccess1()功能:实现二叉树的前序遍历
二叉树前序遍历的思想:
 从根节点开始,沿左子树一直走到没有左孩子的节点为止,
依次访问所经过的节点,同时所经[节点的非空右孩子]进栈;
 当找到没有左孩子的节点时,从栈顶退出该节点的双亲的
右孩子,此时,此节点的左子树已访问完毕;
 在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void FirstOrderAccess1(BTree * header)
{
 BTree * stack[MAX_NODE];
 BTree *p;
 int top;
 top = 0;
 p = header;
 do
 {
  while(p!=NULL)
  {
   printf("BTree[%d] = %c/t",p->order,p->data);
   if(p->rchild!=NULL)
    stack[++top] = p->rchild;
   p = p->lchild;
  }
  if(top!=0)
   p = stack[top--];
 }while((top>0)||(p!=NULL));
}

/*
function MiddleOrderAccess()功能:实现二叉树的中序遍历
二叉树中序遍历的思想:
 从根节点开始,沿左子树一直走到没有左孩子的节点为止,
并将所经[节点]的地址进栈;
 当找到没有左孩子的节点时,从栈顶退出该节点并访问它,
此时,此节点的左子树已访问完毕;
 在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void MiddleOrderAccess(BTree * header)
{
 BTree * stack[MAX_NODE];
 BTree *p;
 int top;
 top = 0;
 p = header;
 do
 {
  while(p!=NULL)
  {
   stack[++top] = p;//节点P进栈
   p = p->lchild;  //继续搜索其左子树
  }
  if(top!=0)
  {
   p = stack[top--];//节点P出栈
   printf("BTree[%d] = %c/t",p->order,p->data);//访问节点P
   p = p->rchild;//继续搜索其左子树
  }
 }while((top!=0)||(p!=NULL));
}

/*
function LastOrderAccess()功能:实现二叉树的后序遍历
二叉树后序遍历的思想:
 从根节点开始,沿左子树一直走到没有左孩子的节点为止,
并将所经[节点]的地址第一次进栈;
 当找到没有左孩子的节点时,此节点的左子树已访问完毕;
从栈顶退出该节点,判断该节点是否为第一次进栈,如是,再
将所经[节点]的地址第二次进栈,并沿该节点的右子树一直走到
没有右孩子的节点为止,如否,则访问该节点;此时,该节点的
左、右子树都已完全遍历,且令指针p = NULL;
 如此重复到栈空为止。
*/
void LastOrderAccess(BTree * header)
{
 BTree * stack[MAX_NODE];//节点的指针栈
 int count[MAX_NODE];//节点进栈次数数组
 BTree *p;
 int top;
 top = 0;
 p = header;
 do
 {
  while(p!=NULL)
  {
   stack[++top] = p;//节点P首次进栈
   count[top] = 0;
   p = p->lchild;   //继续搜索节点P的左子树
  }
  p = stack[top--];//节点P出栈
  if(count[top+1]==0)
  {
   stack[++top] = p;//节点P首次进栈
   count[top] = 1;
   p = p->rchild;  //继续搜索节点P的左子树
  }
  else
  {
   printf("BTree[%d] = %c/t",p->order,p->data);//访问节点P
   p = NULL;
  }
 }while((top>0));
}
/*
function IsLeafNode()功能:判断给定二叉树的节点是否是叶子节点
*/
int IsLeafNode(BTree *node)
{
 if((node->lchild==NULL)&&(node->rchild==NULL))
  return(1);
 else
  return(0);
}
/*
function PrintLeafNode()功能:输出给定二叉树的叶子节点
*/
void PrintLeafNode(BTree *header)
{
 BTree * stack[MAX_NODE];//节点的指针栈
 BTree *p;
 int top;
 p = header;
 top = 0;
 do
 {
  while(p!=NULL)
  {
   stack[++top] = p;
   p = p->lchild;//继续搜索节点P的左子树
  }
  if(top!=0)
  {
   p = stack[top--];
   if(IsLeafNode(p))
    printf("LNode[%d] = %c/t",p->order,p->data);//访问叶子节点
   p = p->rchild;//继续搜索节点P的右子树
  }
 }while(top>0||p!=NULL);
}
/*
function HasTwoChildNode()功能:判断给定二叉树的节点是否存在两个孩子节点
*/
int HasTwoChildNode(BTree *node)
{
 if((node->lchild!=NULL)&&(node->rchild!=NULL))
  return(1);
 else
  return(0);
}
/*
function SwapChildNode()功能:交换给定二叉树的所有节点的左、右孩子
*/
void SwapChildNode(BTree *header)
{
 BTree * stack[MAX_NODE];//节点的指针栈
 BTree *p;
 int top;
 p = header;
 top = 0;
 do
 {
  while(p!=NULL)
  {
   stack[++top] = p;
   p = p->lchild;//继续搜索节点P的左子树
  }
  if(top!=0)
  {
   p = stack[top--];
   if(HasTwoChildNode(p))
    Swap(&p->lchild->data,&p->rchild->data);//交换节点P的左、右孩子
   p = p->rchild;//继续搜索节点P的右子树
  }
 }while(top>0||p!=NULL); 
}


int main(int argc, char* argv[])
{
 BTree * TreeHeader;
 printf("二叉树创建数据结果:/n");
 TreeHeader = CreateBTree(TreeValue1,NODE_COUNT1-1);
 //TreeHeader = CreateBTree(TreeValue2,NODE_COUNT2-1);
 if (TreeHeader==0)
 {
  printf("二叉树创建失败!/n");
  return(0);
 }
 else
 {
  printf("/n二叉树前序遍历结果:/n");
  FirstOrderAccess1(TreeHeader);
  printf("/n二叉树中序遍历结果:/n");
  MiddleOrderAccess(TreeHeader);
  printf("/n二叉树后序遍历结果:/n");
  LastOrderAccess(TreeHeader);
  //printf("/n二叉树的所有叶子节点:/n");
  //PrintLeafNode(TreeHeader);
  //SwapChildNode(TreeHeader);
  //printf("/n二叉树交换孩子的结果:/n");
  //MiddleOrderAccess(TreeHeader);
  printf("/n程序运行完毕!/n");
  return 0;
 }
}

 

C++创建二叉树

从网上爬来的,加了自己的注释,万一忘了自己可以看一看。 #include using namespace std; struct BiTNode{ char data; struc...
  • chixujohnny
  • chixujohnny
  • 2016年03月15日 22:42
  • 7205

二叉树的创建与遍历

二叉树的创建与遍历是比较基本的问题,也是比较难的问题,在c语言中需要对指针和链表的操作比较熟悉,还要对递归有比较好的理解,下面用代码展示,在代码中有比较详细的注释。下面就贴出代码:         ...
  • qingtianweichong
  • qingtianweichong
  • 2013年05月03日 19:52
  • 4586

二叉树的创建及成员函数的实现

本文实现了二叉树的创建及其成员函数的实现 成员函数包括: 1)构造函数 2)拷贝构造函数 3)赋值运算符重载 4)先序遍历(先根遍历) 5)中序遍历 6)后序遍历(后根遍历) 7)层序遍历 8)节点个...
  • xyzbaihaiping
  • xyzbaihaiping
  • 2016年04月20日 18:04
  • 2162

队列建立完全二叉树

完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。比如下面这棵树就是一棵完全二叉树通过图片...
  • CCSUXWZ
  • CCSUXWZ
  • 2016年11月05日 09:19
  • 932

使用c++构建一个二叉树

How to create a binary tree by c++   The binary tree is a fundamental data structure used in compute...
  • xiongyangg
  • xiongyangg
  • 2014年11月09日 13:18
  • 2003

数据结构与算法——二叉树的创建与遍历

这两天在看树的部分,先总结一下二叉树。 什么是树? 树也是一种数据结构,是由n个结点组成的具有层次关系的集合。树由根结点和子节点组成,与现实生活中的树不同,这里的树,根结点是在最上面的,叶子结...
  • hsk256
  • hsk256
  • 2015年05月23日 13:33
  • 2816

二叉树的创建和相关算法

二叉树是一种非常重要的数据结构,它是分支结构的基础,今天本人将写一篇博客来叙述一下其相关的算法以及二叉树的创建过程! 1:二叉树的创建: 主要有 先序,中序,后序,层序创建几种方式,其中前三种建立...
  • bit_clearoff
  • bit_clearoff
  • 2016年05月29日 15:37
  • 4773

二叉树的创建方法【递归】【循环】【插入】

二叉树是一种比较常用的数据结构,这里介绍三种创建二叉树的方法: 第一:递归创建无序二叉树。 include #include #define len sizeof(struct bintree) ...
  • gogoky
  • gogoky
  • 2014年10月07日 21:02
  • 955

数据结构之二叉树建立

树上的笔记记的快满了,随转到博客记录一下
  • pashanhuxp
  • pashanhuxp
  • 2014年09月23日 13:54
  • 2861

二叉树总结创建,遍历

二叉树作为树的一种,是一种重要的数据结构,二叉树中的面试题比较常见的题型大概有下面几个:创建一颗二叉树(先序,中序,后序)、遍历一颗二叉树(先序,中序,后序和层次遍历)、求二叉树中叶子节点的个数、求二...
  • heyuchang666
  • heyuchang666
  • 2015年10月23日 17:54
  • 1558
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二叉树的创建、前序遍历、中序遍历、后序遍历
举报原因:
原因补充:

(最多只允许输入30个字)