关闭

线段树学习(一)

1583人阅读 评论(2) 收藏 举报

先从书上把定义抄下来:

一棵二叉树,记为 T (a,b),参数 a,b表示该节点表示区间[a,b)。区间的长度b-a 记为 L。

递归定义 T[a,b]: 

若 L>1 :[a, (a+b)/2]为 T 的左儿子,[(a+b) /2,b]为 T 的右儿子。 

若 L=1 :T 为一个叶子节点。

区间[1, 10]的线段树表示方法如下: 


这里需要注意一点,图中一共有9个叶子节点,也就是说,这棵树只能代表9个点的数据,也就是[1,9]区间的数据。

所以,我们在对待线段树区间的时候,可以理解为[a,b),即左闭右开。这样,它的叶子节点也就只代表一个点a。

首先,线段树是一个完全二叉树。它有以下性质:

具有n个结点的完全二叉树的深度为[log(2)n]+1([ ]表示取上整)

根据线段树是完全二叉树的这一性质,我们可以用数组保存结点,当然,结点中可以根据需要加些不同的值用来保存不同的信息。

const int Max=pow(2,ceil(log2(Max_N))+1)	//数组最大值计算方法

每个结点的左右孩子可以直接用数组下标去找,左孩子是2*x,右孩子是2*x+1,父亲是x/2。(按照满二叉树运算,虽然浪费一些空间,但可以提高效率)

强大的位运算:

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

线段树构造:

struct Tnode
{
    int l,r;                    //l,r表示此结点所代表区间的左右端点
    /*?*/                      //结构体里面还可以加东西,这里没有加
}node[Max];
void Build(int t,int l,int r)   //t表示数组下标,l、r表示区间左右端点
{
    node[t].l = l , node[t].r = r;//记录此结点所代表区间的左右端点
    if(l == r-1)        //已到叶子结点,不再向下递归建树
    {
        return ;
    }
    int mid = MID(l,r); //将区间分成两半
    Build(L(t),l,mid);  //建立此结点的左孩子
    Build(R(t),mid,r);  //建立此结点的右孩子
}

线段树查询:

void Query(int t,int l,int r)   //t表示数组下标,l、r表示待查询区间左右端点
{
    if( node[t].l == l && node[t].r == r )//已经找到区间
    {
        return ;
    }
    int mid = MID(node[t].l,node[t].r);
    if(l >= mid)                //如果左端点大于mid,待查询区间一定在右孩子中。
        Query(R(t),l,r);
    else
        if(r <= mid)            //如果右端点小于mid,待查询区间一定在左孩子中。
            Query(L(t),l,r);
        else                    //如果不满足上述情况,将待查询区间分割成[l,mid)和[mid,r)继续查找
        {
            Query(L(t),l,mid);
            Query(R(t),mid,r);
        }
}

好了,先写这么多吧。欢迎大家批评指正。
49
1

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:400720次
    • 积分:7061
    • 等级:
    • 排名:第3322名
    • 原创:210篇
    • 转载:2篇
    • 译文:36篇
    • 评论:98条
    友情链接
    最新评论