关闭

matplotlib pyplot 显示中文

matplotlib pyplot 显示中文...
阅读(304) 评论(0)

Deep Learning-TensorFlow (14) CNN卷积神经网络_深度残差网络 ResNet

ResNet(Residual Neural Network)由前微软研究院的 Kaiming He 等4名华人提出,通过使用Residual Block 成功训练152层深的神经网络,在 ILSVRC 2015 比赛中获得了冠军,取得 3.57% 的 top-5 错误率,同时参数量却比 VGGNet 低,效果非常突出。...
阅读(3588) 评论(0)

Deep Learning-TensorFlow (13) CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)

本文将要介绍的是在 ILSVRC 2014 取得了最好的成绩的 GoogLeNet,及其核心结构—— Inception。早期的 V1 结构借鉴了 NIN 的设计思路,对网络中的传统卷积层进行了修改,针对限制深度神经网络性能的主要问题,不断改进延伸到 V4。...
阅读(2907) 评论(1)

Deep Learning-TensorFlow (12) CNN卷积神经网络_ Network in Network 学习笔记

2014年 ICLR 的paper,Network In Network(以下简称 NIN )。这篇 paper 改进了传统的 CNN 网络,采用了少量参数进一步提高了 CIFAR-10、CIFAR-100 等数据集上的准确率,其提出的网络结构是对传统 CNN 网络的改进。...
阅读(1175) 评论(0)

Deep Learning-TensorFlow (11) CNN卷积神经网络_解读 VGGNet

VGGNet 是牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发的的深度卷积神经网络,在 ILSVRC 2014 上取得了第二名的成绩,将 Top-5错误率降到7.3%。...
阅读(2093) 评论(0)

Deep Learning-TensorFlow (10) CNN卷积神经网络_ TFLearn 快速搭建深度学习模型

TFLearn 是一个构建在 TensorFlow 之上的模块化和透明的深度学习库。它为 TensorFlow 提供高层次 API,目的是便于快速搭建试验环境,同时保持对 TensorFlow 的完全透明和兼容性。...
阅读(1954) 评论(0)

Deep Learning-TensorFlow (9) CNN卷积神经网络_《TensorFlow实战》及经典网络模型(下)

上篇博文中介绍了 ILSVRC 及往年的经典模型 AlexNet,VGG,Google Inception V1, 本文继续介绍 Inception 的后续版本,和15年微软著名的 ResNet。...
阅读(1003) 评论(0)

Deep Learning-TensorFlow (8) CNN卷积神经网络_《TensorFlow实战》及经典网络模型(上)

由黄文坚所写的《TensorFlow实战》第6章讲解了关于四大经典 CNN 网络:AlexNet、VGGNet、Google Inception Net 和 ResNet 的基本原理。本文主要节选自作者《TensorFlow实战》第6章,关于这四大 CNN 网络实现方式可参考《TensorFlow实战》,其中有这几种网络的详细实现步骤。...
阅读(1712) 评论(1)

Deep Learning-TensorFlow (7) CNN卷积神经网络_《Tensorflow:实战Google深度学习框架》

在实验室的购书报销活动中,选择了市面上为数不多的 TensorFlow 书籍,一方面是想借助书籍介绍系统地了解深度学习及 TensorFlow 的使用,另一方面参考了知乎和亚马逊上对这几本中文教程的评价,最终选择了才云科技的这本《Tensorflow:实战Google深度学习框架》。...
阅读(1026) 评论(0)

Deep Learning-TensorFlow (6) CNN卷积神经网络_Word2vec及NCE

本文将解析建立 TensorFlow 模型 word2vec 学习文字的向量表示即 词嵌套(word embedding)。...
阅读(2087) 评论(0)
20条 共2页1 2 下一页 尾页
    个人资料
    • 访问:31335次
    • 积分:521
    • 等级:
    • 排名:千里之外
    • 原创:18篇
    • 转载:2篇
    • 译文:0篇
    • 评论:7条