关闭

在R中进行相关分析

标签: R语言
436人阅读 评论(0) 收藏 举报
分类:

1.用R进行多元相关分析

#用cov函数计算mtcars数据框的前三个变量的协方差矩阵
> cov(mtcars[1:3])
             mpg        cyl       disp
mpg    36.324103  -9.172379  -633.0972
cyl    -9.172379   3.189516   199.6603
disp -633.097208 199.660282 15360.7998
#用cor函数计算mtcars数据框的前三个变量的相关系数矩阵
> cor(mtcars[1:3])
            mpg        cyl       disp
mpg   1.0000000 -0.8521620 -0.8475514
cyl  -0.8521620  1.0000000  0.9020329
disp -0.8475514  0.9020329  1.0000000
#以上原理说明,协方差矩阵可以检测变量间的线性相关度,当协方差的正负表明了对应的相关性,但是不同数据集差异,一些数据之间的协方差是不可以比较的。因此我们要比较不同数据集之间两个变量的线性相关程度,首先应该进行规范化处理,并选择相关系数而非协方差。
#我们可以使用ggplot包来绘制对应的热力图:
> library(reshape2)
> library(ggplot2)
> qplot(x=Var1,y=Var2,data=melt(cor(mtcars[1:3])),fill=value,geom = "tile")

相关系数矩阵热力图

2.进行多元线性回归分析

#...
>data(mtcars)
#调用lm函数将变量装入线性模型中
> lmfit = lm(mtcars$mpg ~ mtcars$cyl)
> lmfit

Call:
lm(formula = mtcars$mpg ~ mtcars$cyl)

Coefficients:
(Intercept)   mtcars$cyl  
     37.885       -2.876  
#调用summary函数获得模型的特征信息:
Estimate Std. Error t value Pr(>|t|)
估值,标准误差,T值,P值
Call:
lm(formula = mtcars$mpg ~ mtcars$cyl)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.9814 -2.1185  0.2217  1.0717  7.5186 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  37.8846     2.0738   18.27  < 2e-16 ***
mtcars$cyl   -2.8758     0.3224   -8.92 6.11e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.206 on 30 degrees of freedom
Multiple R-squared:  0.7262,    Adjusted R-squared:  0.7171 
F-statistic: 79.56 on 1 and 30 DF,  p-value: 6.113e-10
#调用anova完成方差表分析
> anova(lmfit)
Analysis of Variance Table

Response: mtcars$mpg
           Df Sum Sq Mean Sq F value    Pr(>F)    
mtcars$cyl  1 817.71  817.71  79.561 6.113e-10 ***
Residuals  30 308.33   10.28                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#在散点图上展示两个变量的之间的回归线,然后用abline增加一条回归线,注意lm中的y,x与plot中的x,y
>  plot(mtcars$cyl,mtcars$mpg)
> abline(lmfit)

cyl与mpg的回归关系

0
0
查看评论

R语言典型相关分析

自己整理编写的R语言常用数据分析模型的模板,原文件为Rmd格式,直接复制粘贴过来,作为个人学习笔记保存和分享。部分参考薛毅的《统计建模与R软件》和《R语言实战》1 关键点:典型相关分析典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关...
  • Tiaaaaa
  • Tiaaaaa
  • 2017-02-27 16:40
  • 2412

相关分析和回归分析

相关分析 相关分析定义 相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。 相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或...
  • xiaojianpitt
  • xiaojianpitt
  • 2010-04-05 22:50
  • 15806

【R语言】新手快速理解相关分析(一)

R语言相关分析
  • CheyenneLam
  • CheyenneLam
  • 2017-03-15 11:49
  • 859

典型相关分析如何分析两组变量的关系

前言我们在分析两组变量之间的相关性时,比如X=[X1,X2,...,Xm]X=[X_1,X_2,...,X_m]和Y=[Y1,Y2,...,Yn]Y=[Y_1,Y_2,...,Y_n],最原始的方法就是直接计算X和Y的协方差矩阵,矩阵有m*n个值。有了协方差矩阵就得到了两两变量之间的相关性,比如ci...
  • wangyangzhizhou
  • wangyangzhizhou
  • 2017-12-07 09:15
  • 793

R相关分析

相关分析 : 函数:cor() 检测:cor.test(); 例如: li = iris[which(iris$Species == "setosa"), 1:2] plot(li) 求相关系数:cor(li[1],li[2])   相关系数检测:co...
  • AcceGrow
  • AcceGrow
  • 2014-09-03 22:56
  • 449

典型相关分析(Canonical Correlation Analysis, CCA)

典型相关分析  (一)引入      典型相关分析(Canonical Correlation Analysis)是研究两组变量之间相关关系的一种多元统计方法。他能够揭示出两组变量之间的内在联系。    ...
  • liu_guanzhang
  • liu_guanzhang
  • 2014-12-16 16:25
  • 1100

【R语言】读懂Pearson相关分析结果

Pearson相关分析R语言应用 Pearson相关分析 Pearson相关分析快速理解 R语言Pearson相关分析
  • CheyenneLam
  • CheyenneLam
  • 2017-03-15 15:58
  • 8715

SPSS——相关分析——Pearson简单相关系数

简介相关分析属于数据分析流程前端的探索性分析,探究变量间关系及性质,其结果在于指导下一步采取何种方法,是数据挖掘之前的基础工作;场景相关分析之前,有必要搞清楚变量的类型,根据具体类型选择合适的相关系数。Pearson相关系数适用于两变量的度量水平都是尺度数据,并且两变量的总体是正态分布或者近似正态分...
  • liuyuan_jq
  • liuyuan_jq
  • 2016-09-12 22:06
  • 13504

R语言相关分析

相关分析相关系数可以用来描述定量变量之间的关系。相关系数的符号(±)表明关系的方向(正相关或负相关),其值的大小表示关系的强弱程度(完全不相关时为0,完全相关时为1)。我们将关注多种相关系数和相关性的显著性检验。我们将使用R基础安装中的state.x77数据集,它提供了美国50个州在197...
  • qq_33683364
  • qq_33683364
  • 2017-01-03 11:04
  • 3433

R语言 一元线性回归

一元线性回归分析 首先介绍回归分析中最基础的情况:一元线性回归分析。它规定模型f函数只能是y=k*x+b的形式,即只使用一个变量x(故称为一元)的线性形式来预测目标变量y。 6.1.1引例 利用某网站历次促销活动中促销让利费用和销售金额的数据(单位是十万元),将使用该数据集来说明线性回归分析的...
  • jiabiao1602
  • jiabiao1602
  • 2014-10-14 11:35
  • 3089
    个人资料
    • 访问:92443次
    • 积分:1878
    • 等级:
    • 排名:千里之外
    • 原创:96篇
    • 转载:0篇
    • 译文:0篇
    • 评论:5条
    文章分类
    最新评论