关闭

两分类变量相互独立的检验

标签: 数学建模R语言
709人阅读 评论(0) 收藏 举报
分类:


1 列联表检验

  1. 一个实际例子
    • 杀人犯的种族是否会影响判处死刑的问题。 对 1976-1977年美国佛罗里达州20个地区杀人案件中的674个被告进行调查, 考虑的种族有白人 和黑人, 用  和  表示是否判处死刑。调查后把已有数据整理成表格形式
    Table 1: 种族死刑数据
      白人 黑人
    53 15
    430 176
    死刑百分比 11.0 7.9
  2. 试检验判处死刑是否与杀人犯的种族有关
    a<-matrix(c(53,430,15,176),ncol=2)
    chisq.test(a)
    
            Pearson's Chi-squared test with Yates' continuity correction
    
    data:  a
    X-squared = 1.1447, df = 1, p-value = 0.2847
    
    • 说明判处死刑与种族没有显著关系
  3. 死刑判决表的细节
    受害人种族 被告人种族 死刑   死刑百分比
    白人 白人 53 414 11.3
      黑人 11 37 22.9
    黑人 白人 0 16 0
      黑人 4 139 2.8
    小计 白人 53 430 11.0
      黑人 15 176 7.9
  4. 考虑条件列联表 受害人为白人
    Table 2: 死刑判决分表之受害人为白人
    受害人种族 被告人种族 死刑  
    白人 白人 53 414
      黑人 11 37
    a<-matrix(c(53,11,414,37),ncol=2)
    chisq.test(a)
    
            Pearson's Chi-squared test with Yates' continuity correction
    
    data:  a
    X-squared = 4.3416, df = 1, p-value = 0.03719
    
  5. 考虑受害人为黑人
    Table 3: 死刑判决分表之受害人为黑人
    受害人种族 被告人种族 死刑  
    黑人 白人 0 16
      黑人 4 139
    a<-matrix(c(0,4,16,139),ncol=2)
    chisq.test(a)
    
            Pearson's Chi-squared test with Yates' continuity correction
    
    data:  a
    X-squared = 0, df = 1, p-value = 1
    
    警告信息:
    In chisq.test(a) : Chi-squared近似算法有可能不准
    
  6. 辛普森悖论
    • 边际关联的结果和条件关联的结果方向矛盾的情况称为 辛普森悖论(Simpson's paradox)
    • 统计学家经常用它来警告从 X 到 Y 的关联来推论因果关系的危险性
    • 例如医学家观察吸烟和肺癌的关系的时候, 诸如 R. A. Fisher 等统计学家则强调, 可能 存在其他变量(如基因因素) 会使其在进行相应控制好的情况下吸烟和肺癌的关联消失
    • R. A. Fisher 在这个问题上的立场受到了很多学者的攻击

2 检验两属性变量相互独立的一般情况

  1. 一般的统计模型
    • 设随机变量 X,Y 分别取取值 x1,,xp 和 y1,,yq
    • 从实际中抽取的样本经统计列表如下
    Table 4: 列联表数据
    X/Y y1 …. yj yq  
    x1 n11 n1j n1q n1.
     
    xi ni1 nij niq ni.
     
    xp np1 npj npq np.
      n.1 n.j n.q n

    其中 n=i=1pj=1qnij

  2. 检验统计量及其分布
    • 取检验统计统计量
      χ2=i=1pj=1q(nijni.n.jn)2ni.n.jn
    • 可以证明在原假设: X,Y 不相关的条件下有
      χ2χ2((p1)(q1))
    • 其自由度为 pq1(p1)(q1)=pqpq+1=(p1)(q1)



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:22313次
    • 积分:360
    • 等级:
    • 排名:千里之外
    • 原创:14篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条
    文章分类
    文章存档
    最新评论