Implement int sqrt(int x)
.
Compute and return the square root of x.
1. 二分法:这道题一看到函数的定义int sqrt(int x)都是int就高兴了,直接二分吧。但是要注意,即使用long long都TM越界,还要用unsigned long long。最后返回值还要再检查一下。
int sqrt(int x) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
unsigned long long begin = 0;
unsigned long long end = (x+1)/2;
unsigned long long mid;
unsigned long long tmp;
while(begin < end)
{
mid = begin + (end-begin)/2;
tmp = mid*mid;
if(tmp==x)return mid;
else if(tmp<x) begin = mid+1;
else end = mid-1;
}
tmp = end*end;
if(tmp > x)
return end-1;
else
return end;
}
2. 牛顿迭代法
为了方便理解,就先以本题为例:
计算x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,如左图所示。
首先取x0,如果x0不是解,做一个经过(x0,f(x0))这个点的切线,与x轴的交点为x1。
同样的道理,如果x1不是解,做一个经过(x1,f(x1))这个点的切线,与x轴的交点为x2。
以此类推。
以这样的方式得到的xi会无限趋近于f(x)=0的解。
判断xi是否是f(x)=0的解有两种方法:
一是直接计算f(xi)的值判断是否为0,二是判断前后两个解xi和xi-1是否无限接近。
经过(xi, f(xi))这个点的切线方程为f(x) = f(xi) + f’(xi)(x - xi),其中f'(x)为f(x)的导数,本题中为2x。令切线方程等于0,即可求出xi+1=xi - f(xi) / f'(xi)。
继续化简,xi+1=xi - (xi2 - n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2。
有了迭代公式xi+1= (xi + n/xi) / 2,程序就好写了。关于牛顿迭代法,可以参考wikipedia以及百度百科。
int sqrt(int x) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if (x ==0)
return 0;
double pre;
double cur = 1;
do
{
pre = cur;
cur = x / (2 * pre) + pre / 2.0;
} while (abs(cur - pre) > 0.00001);
return int(cur);
}
float InvSqrt(float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating VALUE
i = 0x5f375a86- (i>>1); // gives initial guess y0
x = *(float*)&i; // convert bits BACK to float
x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
return x;
}