Leetcode: Sqrt(x)

该博客主要介绍了如何在LeetCode上解决求解整数平方根的问题。首先,作者提到可以采用二分查找的方法来解决,但需要注意类型溢出问题,可能需要使用更大的数据类型。其次,文章详细解释了牛顿迭代法的原理,通过不断逼近求解f(x)=x^2-n的根,给出迭代公式并展示了如何将该方法应用于实现sqrt(x)的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Implement int sqrt(int x).

Compute and return the square root of x.

1. 二分法:

这道题一看到函数的定义int sqrt(int x)都是int就高兴了,直接二分吧。但是要注意,即使用long long都TM越界,还要用unsigned long long。最后返回值还要再检查一下。

int sqrt(int x) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        unsigned long long begin = 0;
        unsigned long long end = (x+1)/2;
        unsigned long long mid;
        unsigned long long tmp;
        while(begin < end)
        {
            mid = begin + (end-begin)/2;
            tmp = mid*mid;
            if(tmp==x)return mid;
            else if(tmp<x) begin = mid+1;
            else end = mid-1;
        }
        tmp = end*end;
        if(tmp > x)
            return end-1;
        else
            return end;
    }


2. 牛顿迭代法


   为了方便理解,就先以本题为例:

   计算x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,如左图所示。

   首先取x0,如果x0不是解,做一个经过(x0,f(x0))这个点的切线,与x轴的交点为x1

   同样的道理,如果x1不是解,做一个经过(x1,f(x1))这个点的切线,与x轴的交点为x2

   以此类推。

   以这样的方式得到的xi会无限趋近于f(x)=0的解。

   判断xi是否是f(x)=0的解有两种方法:

   一是直接计算f(xi)的值判断是否为0,二是判断前后两个解xi和xi-1是否无限接近。

 

经过(xi, f(xi))这个点的切线方程为f(x) = f(xi) + f’(xi)(x - xi),其中f'(x)为f(x)的导数,本题中为2x。令切线方程等于0,即可求出xi+1=xi - f(xi) / f'(xi)。

继续化简,xi+1=xi - (xi- n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2。

有了迭代公式xi+1= (xi + n/xi) / 2,程序就好写了。关于牛顿迭代法,可以参考wikipedia以及百度百科

int sqrt(int x) {
		// Start typing your C/C++ solution below
        // DO NOT write int main() function
        if (x ==0)
            return 0;
        double pre;
        double cur = 1;
        do
        {
            pre = cur;
            cur = x / (2 * pre) + pre / 2.0;
        } while (abs(cur - pre) > 0.00001);
        return int(cur);
    }




float InvSqrt(float x)
{
    float xhalf = 0.5f*x;
    int i = *(int*)&x; // get bits for floating VALUE
    i = 0x5f375a86- (i>>1); // gives initial guess y0
    x = *(float*)&i; // convert bits BACK to float
    x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
    return x;
}



评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值