[BZOJ4455][ZJOI2016]小星星 容斥原理+树型DP

26 篇文章 0 订阅
8 篇文章 0 订阅

先考虑一个错误的DP, fi,j 表示子树 i 中,i映射到 j 的方案数,这样可能一个点被重复映射。
我们考虑多一维状态fi,j,S表示映射点集至多为 S 的方案,枚举S来DP,用朴素的容斥原理来求出正确答案即可。
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
int n,m,st[20],top;
ll f[20][20],ans;
bool mp[20][20];
struct edge
{
    int t;
    edge *next;
}*con[20];
void ins(int x,int y)
{
    edge *p=new edge;
    p->t=y;
    p->next=con[x];
    con[x]=p;
}
void dp(int v,int fa,int s)
{
    for(int i=1;i<=top;i++)  f[v][st[i]]=1;
        for(edge *p=con[v];p;p=p->next)
            if(p->t!=fa)
            {
                dp(p->t,v,s);
                for(int i=1;i<=top;i++)
                {
                    ll cal=0;
                        for(int j=1;j<=top;j++)
                            cal+=f[p->t][st[j]]*mp[st[i]][st[j]];
                    f[v][st[i]]*=cal;
                }
            }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        mp[x][y]=mp[y][x]=1;
    }
    for(int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        ins(x,y);ins(y,x);
    }
    for(int s=0;s<(1<<n);s++)
    {
        top=0;
        for(int i=0;i<n;i++)
            if((s>>i)&1) st[++top]=i+1;
        dp(1,0,s);
        for(int i=1;i<=top;i++)
            ans+=f[1][st[i]]*((n-top)&1?-1:1);  
    }
    printf("%lld",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值