腾讯控股再创新低 疑为机构操纵

  一面是接连下挫的股价,一面是卖方机构的不断唱好,腾讯控股(00700.HK)在香港的境遇着实让人费解,而这背后或许有机构故意沽空。

  6月15日,腾讯控股再创阶段性盘中新低125.6港元,收报127.4港元,下跌3.12%,而较历史高位已经下滑了27.8%。建银国际、 法国巴黎银行、德意志银行等机构,近日继续发布多份看好腾讯的研究报告;而有不少和腾讯股价挂钩衍生工具的发行商,包括麦格理、瑞信、瑞银、德银等,也继 续提醒投资者看好腾讯的投资产品,赌腾讯股价反弹。

  对此,汇盈证券董事谢明光在接受《第一财经日报》记者采访时表示,近日腾讯股价的下跌,一方面是三网融合对腾讯未来面临的市场竞争产生不确定影 响,而更重要的是公司主席马化腾多次减持股份,对市场信心有一定打击。谢明光提醒投资者,如果遇到公司高管减持股份,投资者应当对此有谨慎的态度,这可能 是表明高管对公司前景有所忧虑。

  谢明光指出,近日和腾讯股价挂钩的认购窝轮(Call Warrant,相当于内地的认购权证)、牛证、ELN(股票挂钩票据)等衍生工具发行太多,远远高于认沽窝轮和熊证的发行量,不排除有证券公司通过大量 沽空腾讯正股,来榨取衍生工具持有者的利润,事实上近日腾讯的沽空金额大增。

  香港著名股评人林森池则认为,由于上述衍生工具的发行商处于绝对有利的“庄家”地位,小投资者想靠衍生工具获取丰厚利益的幻想,多数是无法实现 的;事实上,发行商的买卖及参与影响,可以有效操纵衍生工具的市场价。

  林森池也指出,一般衍生工具都有到期的时限。这就是“时间值”,即使股价不变,认购窝轮等产品的价格会随着时间过去而下跌。作为发行商的投资银 行,可以在法律许可的条件下,通过沽空衍生工具和买卖正股控制价格来猎取暴利,这和经营赌场者定是家肥屋润的道理相当。他认为,更值得留意的是,这些投资 银行不单只经营赌场,还可以参与买卖,与小投资者“对赌”,猎取他们手上的有限资金。

  谢明光则认为,不排除腾讯股价会继续受压,投资者应当以当年阿里巴巴(01688.HK)和中国移动(00941.HK)出现过远高于大盘的暴 跌为鉴。

  2007年11月阿里巴巴上市后,同年12月曾经一度升至41.8港元的历史高位,之后一年股价极度不振,2008年10月一度触及3.46港 元的历史低位,今年6月15日收报15.4港元;中国移动在2007年10月一度触及160港元的历史高位,一年后的2008年10月一度跌至50.5港 元,而最新收报76.55港元。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值