链接:http://poj.org/problem?id=2586
题意:大意是一个公司在12个月中,或固定盈余s,或固定亏损d.但记不得哪些月盈余,哪些月亏损,只能记得连续5个月的代数和总是亏损(和<0算亏损),问全年是否可能盈利?若可能,输出可能最大盈利金额,否则输出“Deficit".
题解:看了网上的题解,基本上都说是贪心,但我不知道怎样贪心,只不过按自己的想法去做(做的时候不够细心,忽略了细枝末节)。由于连续5个月必须亏损,所以就但看5个月内,亏损最少的情况,是1*d与4*s,是2*d与3*s……5*d+0*s(忽略点1,如果4个月的亏损都小于1个月的盈利,根据题意,那只能5个月都亏损了)。 即要算出单独在5个月内,在亏损最少的情况下,亏损与盈利所占的比例。假设算出d的月份数为k,即用最少的d,去填这12个月,使得每连续5个月,都至少有k个月份为d。由于越靠中间的月份出现的次数越多(但5,6,7,8均出现5次),所以我决定分别在5与8月份开始放置k(为何选5和8,因为他们靠中间,贡献大,且又能照顾到最尾端的月份,且中间的6,7月离得很近,也照顾得到),并且随着k的增大依次向两边放置,如k = 2时,放2,4,8,9。由于没有继续推下去,初以为就直接是2*k个月为亏损。但却忽略了k=4或5时,当k=4时,每向两边放4个,两边都可满足,但是在中间的6,7月份,却有连续两个s盈利,就不符合k=4的条件,所以要在6,7月中再放一个d,即总共为9个d,当k=5时,就直接是12个月了。
所以,这种方法是枚举,不过枚举量少,可以人工枚举。(方法笨拙,见谅!)
收获:当枚举量小时,可人工枚举,但是要注意细节。且当得出一个结论时,不要理所当然以为对,要从多个角度,特别是边界条件,去考验这个结论是否站得住脚。
代码如下:
#include<stdio.h>
int main()
{
long long r,s,d,sum;
while(scanf("%lld%lld",&s,&d)!=EOF)
{
if(d*1>s*4) sum = 10*s - 2*d;
else if(d*2>s*3) sum = 8*s - 4*d;
else if(d*3>s*2) sum = 6*s - 6*d;
else if(d*4>s*1) sum = 3*s - 9*d;
else sum = -1;
if(sum>0)
printf("%lld\n",sum);
else
printf("Deficit\n");
}
return 0;
}