POJ 1050 To the Max

原创 2012年03月28日 15:31:40

1. 根本没有思路,看到如下的解释,才明白怎么做:

    

这个题目很经典的说,O(N^3)的DP。

首先偶们考察这样的题目,简化版:

已知一列数,求任意连续若干个数和的最大值。

SAMPLE: 3 2 -6 2 -1 7

原数3        2      -6       2      -1       7 

处理3        5      -1       2       1       8

因为是连续若干个自然数的和,那么,前面的某个数字取与不取的条件在于:以前面这个数字为结尾的连续数的和最大值是否大于0,如果大于0,那么这个数字必然要会出现在包括数字的序列中,否则无法做到最大。

所以,显然。处理的原则是maxn[i]=max{0,maxn[i-1]}+a[i];

由于无须记录位置。所以,可以直接用一个变量sum代替maxn数组。O(n)的扫描即可。

单列数字的问题解决了,下面我们考察多列数字的

sample:

         0    -2    -7    0 

         9     2    -6    2 

        -4     1    -4    1 

        -1     8     0   -2 



我们可以将多列数字转换成单列数字来做! 可以这样设想,结果是一个长方形,我们把他压扁,使得宽为1。

引入辅助数组st,st[i][j]代表第i列从第1行开始的数字累加到第j行的值。那么,我们每次压扁的时候,就可以用st[i][j]-st[i][k-1]来表示第i列从第k个数字累加到第j个数字的值。达到压缩的效果。然后用上面单列数字的方法来做。算法时间复杂度O (N^3) 



2. 按照上面的思路做的时候,在末尾卡住了,原因是求多维数的最大值思路还不清晰,以后注意这方面的练习。


#include <iostream>
#include <cstring>
using namespace std;

const int MAXn = 101;
int main()
{
    int n, i, j, k, sum, p, ans = 0;
    int num[MAXn][MAXn], t[MAXn][MAXn];
    cin >> n;
    for(i = 1; i <= n; i++)
        for (j = 1; j <= n; j++)
            cin >> num[i][j];
    memset(t, 0, sizeof(t));
    for (j = 1; j <= n; j++)
        for(i = 1; i <= n; i++)
            t[i][j] = t[i][j-1] + num[i][j];
    for (i = 1; i <= n; i++)
        for (j = i; j <= n; j++)
        {
            p = t[1][j] - t[1][i-1];//第1列从第i行到第j行的值的和
            sum = p;
            for (k = 2; k <= n; k++)
            {
                if (sum > 0)
                    sum += t[k][j] - t[k][i-1];
                else sum = t[k][j] - t[k][i-1];
                if (sum > p)
                    p = sum;
            }
            if (ans < p)
                ans = p;
        }
    cout << ans << endl;
    return 0;
}


ACM学习-POJ-1050-To the Max

菜鸟学习ACM,纪录自己成长过程中的点滴。 学习的路上,与君共勉。 ACM学习-POJ-1050-To the Max To th...
  • hitwhylz
  • hitwhylz
  • 2013年09月20日 15:48
  • 3060

POJ-1050-To the Max

题目是说给你一个矩阵,让你求出一个子矩阵,满足和最大 比较简单的DP,枚举列的起点与终点,然后DP计算即可 代码: #include #include #include using namesp...
  • z309241990
  • z309241990
  • 2013年07月03日 17:23
  • 652

poj1050 To the Max (动态规划)

题目意思: 给出一个矩阵。求出和最大的子矩阵,在解决这个问题的之前,首先看一下这个问题的一维问题,给出一个序列求最大子序列。满足ij的和。 题目分析: 对于一维问题,有很多的解决方法,当然也对应不同的...
  • u012435889
  • u012435889
  • 2014年11月09日 12:06
  • 952

acm-poj1050解题报告

题目地址:http://poj.org/problem?id=1050 题目大意:简单易懂,求一个最大为100*100矩阵中的子矩阵中元素之和的最大值 解题思路:说实话这道题算是DP,本人现在正在补...
  • harrety
  • harrety
  • 2015年05月19日 22:13
  • 940

NYOJ 104 最大和 和POJ 1050 To the Max【动态规划】

原题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=104 nyoj题是汉语的,很好理解,该题就是在一个矩阵中找到一个子矩阵,该子矩阵和最大!...
  • PIAOYI0208
  • PIAOYI0208
  • 2012年07月09日 14:08
  • 12980

POJ 1050 动态规划

#include #include #include #include #include #include #include #include #include #include ...
  • qq_24667639
  • qq_24667639
  • 2015年04月22日 22:50
  • 492

POJ 1050 To the Max

一维最大子段和的扩展,枚举多行合成一行的情况,然后使用一维最大子段和的方法计算。/*To the Max Time Limit: 1000MS Memory Limit: 10000K Tot...
  • mimo9527
  • mimo9527
  • 2011年03月09日 18:37
  • 219

【POJ 1050】To the Max(dp)

花摇印月影 春风剪菱窗
  • reverie_mjp
  • reverie_mjp
  • 2016年10月27日 10:47
  • 164

POJ 1050:To the Max

To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43241   Ac...
  • u010885899
  • u010885899
  • 2015年07月13日 09:29
  • 274

poj 1050 to the max

To the Max Time Limit: 1000MS Memory Limit: 10000K     ...
  • ww276452426
  • ww276452426
  • 2015年05月19日 19:35
  • 188
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1050 To the Max
举报原因:
原因补充:

(最多只允许输入30个字)