关闭

POJ 1050 To the Max

152人阅读 评论(0) 收藏 举报

1. 根本没有思路,看到如下的解释,才明白怎么做:

    

这个题目很经典的说,O(N^3)的DP。

首先偶们考察这样的题目,简化版:

已知一列数,求任意连续若干个数和的最大值。

SAMPLE: 3 2 -6 2 -1 7

原数3        2      -6       2      -1       7 

处理3        5      -1       2       1       8

因为是连续若干个自然数的和,那么,前面的某个数字取与不取的条件在于:以前面这个数字为结尾的连续数的和最大值是否大于0,如果大于0,那么这个数字必然要会出现在包括数字的序列中,否则无法做到最大。

所以,显然。处理的原则是maxn[i]=max{0,maxn[i-1]}+a[i];

由于无须记录位置。所以,可以直接用一个变量sum代替maxn数组。O(n)的扫描即可。

单列数字的问题解决了,下面我们考察多列数字的

sample:

         0    -2    -7    0 

         9     2    -6    2 

        -4     1    -4    1 

        -1     8     0   -2 



我们可以将多列数字转换成单列数字来做! 可以这样设想,结果是一个长方形,我们把他压扁,使得宽为1。

引入辅助数组st,st[i][j]代表第i列从第1行开始的数字累加到第j行的值。那么,我们每次压扁的时候,就可以用st[i][j]-st[i][k-1]来表示第i列从第k个数字累加到第j个数字的值。达到压缩的效果。然后用上面单列数字的方法来做。算法时间复杂度O (N^3) 



2. 按照上面的思路做的时候,在末尾卡住了,原因是求多维数的最大值思路还不清晰,以后注意这方面的练习。


#include <iostream>
#include <cstring>
using namespace std;

const int MAXn = 101;
int main()
{
    int n, i, j, k, sum, p, ans = 0;
    int num[MAXn][MAXn], t[MAXn][MAXn];
    cin >> n;
    for(i = 1; i <= n; i++)
        for (j = 1; j <= n; j++)
            cin >> num[i][j];
    memset(t, 0, sizeof(t));
    for (j = 1; j <= n; j++)
        for(i = 1; i <= n; i++)
            t[i][j] = t[i][j-1] + num[i][j];
    for (i = 1; i <= n; i++)
        for (j = i; j <= n; j++)
        {
            p = t[1][j] - t[1][i-1];//第1列从第i行到第j行的值的和
            sum = p;
            for (k = 2; k <= n; k++)
            {
                if (sum > 0)
                    sum += t[k][j] - t[k][i-1];
                else sum = t[k][j] - t[k][i-1];
                if (sum > p)
                    p = sum;
            }
            if (ans < p)
                ans = p;
        }
    cout << ans << endl;
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:32184次
    • 积分:905
    • 等级:
    • 排名:千里之外
    • 原创:64篇
    • 转载:1篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论