POJ 1050 To the Max

原创 2012年03月28日 15:31:40

1. 根本没有思路,看到如下的解释,才明白怎么做:

    

这个题目很经典的说,O(N^3)的DP。

首先偶们考察这样的题目,简化版:

已知一列数,求任意连续若干个数和的最大值。

SAMPLE: 3 2 -6 2 -1 7

原数3        2      -6       2      -1       7 

处理3        5      -1       2       1       8

因为是连续若干个自然数的和,那么,前面的某个数字取与不取的条件在于:以前面这个数字为结尾的连续数的和最大值是否大于0,如果大于0,那么这个数字必然要会出现在包括数字的序列中,否则无法做到最大。

所以,显然。处理的原则是maxn[i]=max{0,maxn[i-1]}+a[i];

由于无须记录位置。所以,可以直接用一个变量sum代替maxn数组。O(n)的扫描即可。

单列数字的问题解决了,下面我们考察多列数字的

sample:

         0    -2    -7    0 

         9     2    -6    2 

        -4     1    -4    1 

        -1     8     0   -2 



我们可以将多列数字转换成单列数字来做! 可以这样设想,结果是一个长方形,我们把他压扁,使得宽为1。

引入辅助数组st,st[i][j]代表第i列从第1行开始的数字累加到第j行的值。那么,我们每次压扁的时候,就可以用st[i][j]-st[i][k-1]来表示第i列从第k个数字累加到第j个数字的值。达到压缩的效果。然后用上面单列数字的方法来做。算法时间复杂度O (N^3) 



2. 按照上面的思路做的时候,在末尾卡住了,原因是求多维数的最大值思路还不清晰,以后注意这方面的练习。


#include <iostream>
#include <cstring>
using namespace std;

const int MAXn = 101;
int main()
{
    int n, i, j, k, sum, p, ans = 0;
    int num[MAXn][MAXn], t[MAXn][MAXn];
    cin >> n;
    for(i = 1; i <= n; i++)
        for (j = 1; j <= n; j++)
            cin >> num[i][j];
    memset(t, 0, sizeof(t));
    for (j = 1; j <= n; j++)
        for(i = 1; i <= n; i++)
            t[i][j] = t[i][j-1] + num[i][j];
    for (i = 1; i <= n; i++)
        for (j = i; j <= n; j++)
        {
            p = t[1][j] - t[1][i-1];//第1列从第i行到第j行的值的和
            sum = p;
            for (k = 2; k <= n; k++)
            {
                if (sum > 0)
                    sum += t[k][j] - t[k][i-1];
                else sum = t[k][j] - t[k][i-1];
                if (sum > p)
                    p = sum;
            }
            if (ans < p)
                ans = p;
        }
    cout << ans << endl;
    return 0;
}


相关文章推荐

poj1050-To the Max-最大子矩阵-dp

一篇讲解最大子矩阵的博客:http://blog.csdn.net/beiyeqingteng/article/details/7056687 To the Max Time Limit: ...
  • ly59782
  • ly59782
  • 2016年08月15日 18:33
  • 143

poj1050 To the Max dp

题意:求一个矩阵的最大子矩阵和。 思路:首先预处理出sum[ i ][ j ][ k ],即以(i,j)为最上端向下连续k个数的和。接着设dp[ i ][ j ][ k ]为以(i,j)为左上端向下...

poj 1050 To the Max & uva 108

poj 1050 To the Max uva 108

POJ结题报告_1050_To the Max

题目描述 思路: 这道题最基本和原始的方法是穷举,但是穷举是一个O(n^4)的算法,题目中明确说明测试数据最大可能是100×100,穷举会超出题目时间限制1000ms。而动态规划是这道题解...
  • qucooln
  • qucooln
  • 2011年11月27日 12:32
  • 325

POJ 1050/ ZOJ 1074:To the Max - DP求子矩阵和

题意:即最大子段和问题在二维空间上的推广思路:一维的情况:设有数组a0,a1…an,找除其中连续的子段,使它们的和达到最大。假如对于子段:9 2 -16 2dp[i]表示:以ai结尾的子段中的最大子段...

POJ 1050 To the Max -- 动态规划

题目地址:http://poj.org/problem?id=1050 Description Given a two-dimensional array of positive and nega...
  • JDPlus
  • JDPlus
  • 2014年02月22日 17:26
  • 1403

POJ--1050--To the Max(线性动规,最大子矩阵和)

POJ--1050--To the Max(线性动规,最大子矩阵和)
  • Dacc123
  • Dacc123
  • 2015年12月20日 22:49
  • 206

DP::Poj1050 To the max

题目:给定一个N*N方阵,元素为整数,求连续子阵全部元素和的最大值。   一开始我想直接在二维上解决问题,在构造递归方程的时候令max[k](k=i+j)为大小i*j的子阵的子阵和的最大值,然而下...
  • timoss
  • timoss
  • 2011年08月02日 09:33
  • 348

poj to the max(最大子矩阵和) 1050(dp大法)

Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any...

连续子数组的最大和问题(一维和二维)To the Max (POJ 1050)

一维数组的连续子数组的最大和 题目:输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。 这是一个典型的D...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1050 To the Max
举报原因:
原因补充:

(最多只允许输入30个字)