聚类算法初探(七)聚类分析的效果评测

转载 2013年12月02日 11:10:01

目前聚类算法种类众多,使得人们在实际应用中难于选择,因此,对聚类分析的结果进行评价是关键的。假如有一个专门针对聚类效果的有效评价机制,那么,我们就可以对众多算法进行比较分析,从而选择最合适的聚类分析算法。


       本文摘自中国科学院计算技术研究所周昭涛的硕士论文《文本聚类分析效果评价及文本表示研究》的第三章,算是一则读书笔记吧,希望对大家有点帮助。





转载自:http://blog.csdn.net/itplus/article/details/10322361


相关文章推荐

聚类的一些评价手段

什么是聚类聚类简单的说就是要把一个文档集合根据文档的相似性把文档分成若干类,但是究竟分成多少类,这个要取决于文档集合里文档自身的性质。下面这个图就是一个简单的例子,我们可以把不同的文档聚合为3类。另外...
  • luoleicn
  • luoleicn
  • 2010年03月05日 19:19
  • 24618

聚类效果好坏的评价指标

原文标题: 《Understanding of Internal Clustering Validation Measures》 发表在2010 IEEE International Confere...

关于K-means聚类分析的结果评价 Davies Bouldin值(DBI)

原文在此:http://blog.sina.com.cn/s/blog_65c8baf901016flh.html 用rapid miner的话,按如下设计,DBI值越小越好(说明分散程度低):...

评价聚类结果之entropy(熵值)和purity(纯度)

使用k-means算法对数据进行聚类之后,通常需要估计一下
  • vernice
  • vernice
  • 2015年06月12日 09:46
  • 7762

聚类算法评价指标

一、Not Given Label: 1、Compactness(紧密性)(CP)       CP计算 每一个类  各点到聚类中心的平均距离       CP越低意味着类内...

聚类分析聚类算法综述ppt

  • 2010年06月14日 20:20
  • 672KB
  • 下载

聚类分析(六)基于密度的聚类算法 — OPTICS

1  什么是 OPTICS 算法 在前面介绍的 DBSCAN 算法中,有两个初始参数 E (邻域半径)和 minPts(E 邻域最小点数 ) 需要用户手动设置输入,并且聚类的类簇结果对这两个参数...

聚类分析之基于密度的聚类算法OPTICS

聚类分析(五)——基于密度的聚类算法OPTICS

聚类分析之基于密度的聚类算法(DBSCAN)

一  什么是基于密度的聚类算法 由于层次聚类算法和划分式聚类算往往只能发现凸形的聚类簇。为了弥补这一缺陷,发现各种任意形状的聚类簇,开发出基于密度的聚类算法。这类算法认为,在整个样本空间点中,各...

聚类分析(五)基于密度的聚类算法 — DBSCAN

一  什么是基于密度的聚类算法 由于层次聚类算法和划分式 聚类算往往只能发现凸形的聚类簇。为了弥补这一缺陷,发现各种任意形状的聚类簇,开发出基于密度的聚类算法。这类算法认为,在整个样本空间点中,...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:聚类算法初探(七)聚类分析的效果评测
举报原因:
原因补充:

(最多只允许输入30个字)