求逆序数的对数

本文介绍了两种求解逆序数的方法:一是使用树状数组结合离散化处理大规模数据;二是采用归并排序实现。通过具体代码示例,详细阐述了每种方法的实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给你一组数列,让你求一共有多少逆序数的对数。

两种方法:

第一.树状数组求(加一个离散化求避免数组过大,而达不到内存)题目:点击打开链接

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define maxn 500010
using namespace std;
int c[maxn],n;
struct  qq
{
    int zhi,xiabiao;
} q[maxn];
bool cmp(qq a,qq b)
{
    if(a.zhi!=b.zhi )
        return a.zhi<b.zhi;
    else
        return a.xiabiao<b.xiabiao;
}
int low_bit(int i)
{
    return i&(-i);
}
void update(int i,int v)
{
//    int y=0;
    while(i<=n)
    {
        c[i]+=v;
        i+=low_bit(i);

    }
}
int get_sum(int i)
{
    int res=0;
    while(i)
    {
        res+=c[i];
        i-=low_bit(i);
    }
    return res;
}
int main()
{
    while(~scanf("%d",&n))
    {
        if(n==0)
            return 0;
        memset(c,0,sizeof(c));
        long long  ans=0;
        for(int i=1; i<=n; i++)
        {

            scanf("%d",&q[i].zhi );
            q[i].xiabiao=i;

//            for(int j=1; j<=n; j++)
//                aa[q[i].xiabiao]=j;
        }
        sort(q+1,q+1+n,cmp);
        for(int i=1; i<=n; i++)
        {
            update(q[i].xiabiao,1);
            ans+=i-get_sum(q[i].xiabiao);
        }
        printf("%I64d\n",ans);

    }
    return 0;
}
这个题目不离散化是没法做的,主要是数太大了,数组开不了那么多,(说一下离散化的思路,就是开一个结构体,val记录权值,xiabiao记录下标,然后按照下标从小到大排一下序
,然后现在的下标就相当于原来数的权值,这样子就大大降低了数组的利用度)
解法二在这里就不说明了,就是归并排序,分治法。
归并排序求逆序数:
代码:<pre name="code" class="cpp">#include<iostream>
using namespace std;
int count=0;//新增
void Merge(int* A,int left,int mid,int right,int* C)
{	//Merge可以将两个有序的数组排好序,时间复杂度:o(n)
	int i=left;
	int j=mid+1;
	int k=left;
	while(i <= mid && j <= right)
	{
		if(A[i] <= A[j])
			C[k++]=A[i++];
		else
		{
			C[k++]=A[j++];
			count += mid-i+1;//新增
		}
	}
	while(i <= mid)
		C[k++]=A[i++];
	while(j <= right)
		C[k++]=A[j++];
	//C[]已经有序,将C[]中数据复制回原数组A[]
	for(int i=left;i <= right;++i)
		A[i]=C[i];
}	
void MergeSort(int* A,int left,int right,int* C)//假定MergeSort能将一个乱序数组A排好序.
{
	if(left < right)
	{
		int mid=(left+right)/2;
		MergeSort(A,left,mid,C);//排好一个数组1
		MergeSort(A,mid+1,right,C);//排好一个数组2
		Merge(A,left,mid,right,C); //合并两个有序的数组
	}
}

void main()
{
	int A[]={2,1,3,6,4,0,11,3,5};
	int len=sizeof(A)/sizeof(A[0]);
	int *C=new int[len];
	MergeSort(A,0,len-1,C);
	for(int i=0;i<len;++i)
		cout<<A[i]<<' ';
	cout<<endl;
	cout<<count<<endl;
	delete[] C;
}

 

还是要反复的看,反复的看,毕竟自己不是特别的熟,左右比较求逆序数。

### 使用归并排序算法计算对数量 #### 方法概述 归并排序的核心思想是分治法,即将数组分为更小的部分分别处理后再合并。在合并过程中可以统计序对的数量。当两个子数组被分开时,左边的子数组元素大于右边的子数组元素的情况即构成序对[^1]。 对于暴力解法(嵌套循环),虽然简单易懂,但由于其时间复杂度为 \( O(n^2) \),不适合大规模数据集的需。而通过归并排序实现序对计数,则能将时间复杂度降低到 \( O(n\log n) \)[^2]。 --- #### 实现细节 以下是基于归并排序的序对计数的具体逻辑: 1. **分解阶段** 将原始数组不断划分为两部分,直到每部分仅剩下一个元素为止。这一过程类似于标准的归并排序拆分操作。 2. **合并阶段** 合并已排序的子数组,在此期间完成序对的统计工作。具体来说: - 假设当前正在比较左半部分索引 `i` 和右半部分索引 `j` 的值; - 如果发现左侧元素较大 (`arr[i] > arr[j]`),则说明从位置 `i` 到该子数组结束的所有元素都与右侧当前位置上的元素形成序对; - 计算这些序对的数量,并将其累加至全局变量中。 3. **返回结果** 当整个数组重新组合完毕后,最终得到的就是总的对数目。 --- #### Python代码示例 下面是一个完整的Python程序用于演示上述方法: ```python def merge_and_count_split_inv(left, right): result = [] i = j = inv_count = 0 while i < len(left) and j < len(right): if left[i] <= right[j]: result.append(left[i]) i += 1 else: result.append(right[j]) # Count the number of split inversions. inv_count += (len(left) - i) j += 1 result.extend(left[i:]) result.extend(right[j:]) return result, inv_count def sort_and_count(array): if len(array) <= 1: return array, 0 mid = len(array) // 2 left_sorted, left_inversions = sort_and_count(array[:mid]) # Recursive call on left half right_sorted, right_inversions = sort_and_count(array[mid:]) # Recursive call on right half merged_array, split_inversions = merge_and_count_split_inv(left_sorted, right_sorted) total_inversions = left_inversions + right_inversions + split_inversions return merged_array, total_inversions if __name__ == "__main__": test_array = [2, 4, 1, 3, 5] _, num_of_inversions = sort_and_count(test_array) print(f"The number of inversion pairs is {num_of_inversions}.") ``` --- #### 结果解释 以上代码实现了归并排序的同时也完成了序对的统计功能。测试用例 `[2, 4, 1, 3, 5]` 中存在三对序关系 `(2,1), (4,1)` 及 `(4,3)` ,因此输出应显示总共有三个序对。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值