Link-Cut-Tree总结


概念

LCT大约是树链剖分和Splay的结合版,因为要动态维护树的结构和树上的信息,所以把维护重边的线段树换成更灵活的Splay。Splay作为辅助树是按深度来维护树上的一条链,就像是维护树上的一个序列一样。
主要操作围绕access和splay来进行。

资料
基本思路
好blog
我校神犇小说


模板

1.Access

Access(x)操作就是把x到根的路径上的点的path father全部设为路径上的点且每个点的preferred son都设为路径上的点.这么说有点绕,还是上张图比较好。

这里写图片描述

void access(int x)
{
    splay(x);
    t[t[x].ch[1]].pf=x;t[t[x].ch[1]].fa=0;
    t[x].ch[1]=0;
    while(t[x].pf!=0)
    {
        int u=t[x].pf;
        splay(u);
        t[x].pf=0;
        t[t[u].ch[1]].pf=u;t[t[u].ch[1]].fa=0;
        t[u].ch[1]=x;t[x].fa=u;
        update(u);
        x=u;
    }
}

2.findroot

这个应该比较简单,直接access,splay然后向左一路找下去即可

int findroot(int x)
{
    access(x);
    splay(x);
    while(t[x].ch[0])x=t[x].ch[0];
    return x;
}

3.beroot
这个应该也比较简单,只需access(x)然后splay(x)最后打上翻转标记。

void beroot(int x)
{
    access(x);
    splay(x);
    t[x].rev^=1;
}

4.link
先保证root不相等
然后access(y),beroot(x)
把x的pf设为y

void link(int x,int y)
{
    beroot(x);
    access(y);
    t[x].pf=y;
}

5.cut
先让x成为根,然后access(y),splay(y),这时y的左节点只有x,然后断去即可。

void cut(int x,int y)
{
    beroot(x);
    access(y);
    splay(y);
    t[y].ch[0]=0;
    t[x].fa=t[x].pf=0;
    update(y);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值