资源 |“从蒙圈到入坑”,推荐新一波ML、DL、RL以及数学基础等干货资源

原创 2017年09月22日 00:00:00

向AI转型的程序员都关注了这个号☝☝☝

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1


编译 | AI科技大本营(rgznai100)

参与 | suiling



此前营长曾发过一篇高阅读量、高转发率,高收藏量的文章《爆款 | Medium上6900个赞的AI学习路线图,让你快速上手机器学习》,本文共分为五个部分:


  • Part 1:为什么机器学习重要。人工智能与机器学习概述——过去,现在,将来。

  • Part 2.1:监督学习。线性回归,损失函数,过拟合,梯度下降。

  • Part 2.2:监督学习II。两种分类方法:逻辑回归和SVMs。

  • Part 2.3:监督学习III.。非参数学习:k最近邻,决策树,随机森林。并介绍交叉验证,如何调参和模型融合。

  • Part 3:无监督学习。聚类:k-means,层次聚类。降维:主成份分析法(PCA),奇异值分解(SVD)。

  • Part 4:神经网络。深度学习的工作原理,以及卷积神经网络(CNN),循环神经网络(RNNs)和实际应用。

  • Part 5:增强学习。介绍马尔可夫决策过程。Q-learning,策略学习,深层增强学习。价值学习问题。 

  • 附录:最好的机器学习资源、机器学习课程资源列表。


现在把最后一个附录部分——“机器学习课程资源列表”进行了整理,该节主要包含一些关于AI、机器学习以及深度学习的资源,有助于初学者紧跟趋势快速“入坑”。


关于制定课程学习计划的通用建议


对于想进入这个行业的学习者来说,去学校学习这个方法有时候并不那么凑效,或者说鉴于学习者条件,这个想法是不可取的。基于这些考虑,我列出了以下课程,不过你需要注意以下两点:


1.先打好基础,再专攻某个你感兴趣的领域


无需深入研究机器学习的各个知识点,它所涉及的范围太多太广了,并且这个领域处于快速演进和迭代中。熟练掌握基础概念,并聚焦于你感兴趣的方向,不管是语义理解、计算机视觉、深度强化学习、机器人,或者其他什么领域都可以。


2.根据你的兴趣设置课程


动力和兴趣对结果有很强的导向性,强迫自己进步反而适得其反。以下我们推荐的课程并不是最详尽的,但太多选择反而无从选择,并且这些课程都是我们觉得比较好或者是强烈推荐的。如果你觉得有遗漏,可以告我一声哈~



基础课


1. 编程


语法和基本概念:

Google’s Python Class

https://developers.google.com/edu/python/

Learn Python the Hard Way

https://learnpythonthehardway.org/book/ex0.html


练习

Coderbyte 

https://coderbyte.com/

Codewars 

https://www.codewars.com/

HackerRank.

https://www.hackerrank.com/


2. 线性代数


Deep Learning Book, Chapter 2: Linear Algebra. 与机器学习相关的线性代数概念一览

http://www.deeplearningbook.org/contents/linear_algebra.html

A First Course in Linear Model Theory,作者是Nalini Ravishanker and Dipak Dey,在统计学中引入线性代数。context. 

https://www.amazon.com/First-Course-Linear-Model-Theory/dp/1584882476


3. 概率与统计


麻省理工学院18.05,概率与统计简介(Introduction to Probability and Statistics),由Jeremy Orloff和乔纳森·Jonathan Bloom授课。直观介绍概率推理和统计推断,对于了解机器如何思考、规划和作出决定非常有用。

https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/index.htm

All of Statistics: A Concise Course in Statistical Inference,作者Larry Wasserman,关于统计的介绍性文本。

http://www.ic.unicamp.br/~wainer/cursos/1s2013/ml/livro.pdf


4. 微积分


可汗学院: Differential Calculus

https://www.khanacademy.org/math/calculus-home/differential-calculus

斯坦福CS231n: Derivatives, Backpropagation, and Vectorization,Justin Johnson编写

http://cs231n.stanford.edu/handouts/derivatives.pdf



机器学习


课程

吴恩达在Coursera上的机器学习课程(或者Stanford CS229)

https://www.coursera.org/learn/machine-learning

数据科学训练营:Galvanize (full-time, 3 months, $$$$), Thinkful (flexible schedule, 6 months, $$)

https://www.galvanize.com/san-francisco/data-science

https://www.thinkful.com/bootcamp/data-science/flexible/


书籍

Gareth James等人撰写的统计学导论(可在线阅读)

http://www-bcf.usc.edu/~gareth/ISL/



深度学习


课程

Deeplearning.ai, 吴恩达介绍深度学习的课程。

http://deeplearning.ai/

CS231n: Convolutional Neural Networks for Visual Recognition,斯坦福深度学习课程,非常适用于构建深度学习的基础,非常有吸引力,还提供有价值的问题集合。 

http://cs231n.stanford.edu/syllabus.html


项目

Fast.ai,手把手教你上手项目,包括猫狗图片分类等。

http://www.fast.ai/

MNIST handwritten digit classification with TensorFlow. 通过谷歌的这个教程,你可以在3个小时内将手写数字分类准确率提升到99%。

https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0

参加Kaggle比赛小试身手。使用感兴趣的论文,并参照GitHub上的其他版本。

https://www.kaggle.com/


读什么?

Deep Learning Book, 深度学习圣经,由Ian Goodfellow, Yoshua Bengio以及Aaron Courville共同编写。

http://www.deeplearningbook.org/

Neural Networks and Deep Learning,清晰易读的在线深度学习文档,由Michael Nielsen编写。

http://neuralnetworksanddeeplearning.com/chap1.html

Deep Learning Papers Reading Roadmap,深度学习论文阅读线路图,按照年度和研究领域组织的重要论文汇编。中文版,请见营长之前翻译的版本《重磅| 128篇论文,21大领域,深度学习最值得看的资源全在这了

https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap



强化学习


课程

伯克利大学:John Schulman’s CS 294: Deep Reinforcement Learning

http://rll.berkeley.edu/deeprlcourse/

伦敦大学学院:David Silver’s Reinforcement Learning course

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

OpenAI和加州大学伯克利分校联合开办:Deep RL Bootcamp,申请页面已经关闭,但值得关注。

https://www.deepbootcamp.io/


项目

Andrej Karpathy’s Pong from Pixels,130行代码从零实现一个乒乓球游戏。

http://karpathy.github.io/2016/05/31/rl/

Arthur Juliani’s Simple Reinforcement Learning with Tensorflow系列。

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

OpenAI’s requests for research上有不少项目创意

https://openai.com/requests-for-research/


读什么?

Reinforcement Learning: An Introduction,作者Richard Sutton

http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf



AI相关


Artificial Intelligence: A Modern Approach,作者Stuart Russell,Peter Norvig

http://aima.cs.berkeley.edu/

Sebastian Thrun在优达学城的课:Intro to Artificial Intelligence

https://cn.udacity.com/course/intro-to-artificial-intelligence--cs271


奖学金计划:

Insight AI Fellows Program

http://insightdata.ai/ 

Google Brain Residency Program

https://research.google.com/teams/brain/residency/



AI安全


只是想简单了解这方面的,可以看

Johannes Heidecke’s Risks of Artificial Intelligence

https://thinkingwires.com/posts/2017-07-05-risks.html

 OpenAI和Google Brain联合推出的Concrete Problems in AI Safety

https://blog.openai.com/concrete-ai-safety-problems/

Wait But Why’s article on the AI Revolution.

https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html


想要详细了解这方面的,请参看

Nick Bostrom’s Superintelligence

https://intelligence.org/research/

Machine Intelligence Research Institute (MIRI) 和 Future of Humanity Institute (FHI) 在AI 安全方面发表过的研究。

https://www.fhi.ox.ac.uk/research/research-areas/


请持续关注 

with /r/ControlProblem on Reddit.

https://www.reddit.com/r/ControlProblem/


期刊

Import AI, 由来自OpenAI的Jack Clark打理,主要是行业李的最新发展情况。

https://jack-clark.net/import-ai/

Machine Learnings,Sam DeBrule主办,经常有这个领域的嘉宾来客串。

https://machinelearnings.co/

Nathan.ai, 涵盖了从第三方投资角度看AI行业新闻和评论。

http://nathan.ai/

The Wild Week in AI ,由Denny Britz创办

https://www.getrevue.co/profile/wildml


其他推荐

What is the best way to learn machine learning without taking any online courses? — Eric Jang, Google Brain

https://www.forbes.com/sites/quora/2017/03/22/what-is-the-best-way-to-learn-machine-learning-without-taking-any-online-courses/#30fc6e5d5d87

What are the best ways to pick up deep learning skills as an engineer?" - answered by Greg Brockman, CTO of OpenAI

https://www.quora.com/What-are-the-best-ways-to-pick-up-Deep-Learning-skills-as-an-engineer

A16z's AI Playbook, a more code-based introduction to AI

http://aiplaybook.a16z.com/

AI safety syllabus, designed by 80,000 Hours

https://80000hours.org/ai-safety-syllabus/



原文地址

https://medium.com/machine-learning-for-humans/how-to-learn-machine-learning-24d53bb64aa1


提示:更多干货资源,请关注AI科技大本营微信公众号(rgznai100),在菜单栏中查看分类专题———干货资源分类。



AI公开课

主题:让机器读懂你的意图——人体姿态估计入门

时间:9月26日晚8点

嘉宾:曾冠奇,便利蜂智能零售实验室团队负责人

内容:

  • 人体姿态估计在新零售的应用点

  • 人体姿态估计的整个知识结构树

  • 人体姿态估计一个流派的论文、算法和代码解析

扫码报名

0?wx_fmt=png


主题:深度学习中基础模型性能的思考和优化

时间:已结课(可看复播)

嘉宾:吴岸城 菱歌科技首席算法科学家

扫码学习:

0?wx_fmt=png


主题:XGBoost模型原理及其在各大竞赛中的优异表现

时间:已结课(可看复播)

嘉宾:卿来云 中科院副教授

扫码学习:

0?wx_fmt=png


主题:深度学习入门及如何转型AI领域

时间:已结课(可看复播)

嘉宾:覃秉丰 深度学习技术大咖

扫码学习:

0?wx_fmt=png


以上课程都是免费的哦,快上车~~

0?wx_fmt=png


 ☞ 点赞和分享是一种积极的学习态度

版权声明:本文为博主原创文章,未经博主允许不得转载。

前端干货资源

前端收录 Helloweba为广大前端者收录了常用实用的前端资源工具,方便大家学习和查阅。 库/框架 jQuery 优秀的Javascript库 ...
  • hardgirls
  • hardgirls
  • 2016年08月13日 10:58
  • 1089

干货!MySQL 资源大全

分析工具 性能,结构和数据分析工具 Anemometer – 一个 SQL 慢查询监控器。 innodb-ruby – 一个对 InooDB 格式文件的解析器,用于 Ru...
  • daiyudong2020
  • daiyudong2020
  • 2016年05月15日 19:44
  • 977

AI, ML, DL的区别

人工智能(Artificial Intelligence)、机器学习(Machine Learning)、深度学习(Deep Learning)经常混叫,虽然没有非常准确的定义,但基本上是下面这些图所...
  • anjy
  • anjy
  • 2017年12月07日 00:22
  • 233

Java 从入门到入土(1)

数组 集合 基础
  • XYW_6136
  • XYW_6136
  • 2017年07月06日 13:37
  • 529

数学基础—ML

转载~http://blog.csdn.net/u010536377/article/details/50252027#常见的算子范数开篇 矩阵知识 Gram矩阵 定理1 向量范数和矩阵范数 ...
  • liukai2918
  • liukai2918
  • 2017年10月01日 23:40
  • 94

android开发各种相关干货

Android知识库 csdn上面的知识库,包括开发工具、基础知识、软件架构等等各方各面的知识,非常全面。 http://lib.csdn.net/base/15Android Dev Too...
  • aishang5wpj
  • aishang5wpj
  • 2015年12月01日 15:51
  • 1500

十二个程序员必备的优质资源推荐

作为一名伪开发者,深深的明白程序猿们的不容易,今天特地搜罗了一些必备的优质资源供大家参考,希望我猜的这些网站都有你喜欢的在内。...
  • proginn
  • proginn
  • 2016年06月08日 16:36
  • 1080

AS3资源处理

package {  import flash.display.Loader;  import flash.display.MovieClip;  import flash.display.Sprit...
  • q277055799
  • q277055799
  • 2011年11月15日 16:56
  • 297

AS3 调用外部SWF中元件库中的元件

 一、目的    bb.swf的元件库中有一个元件,在aa.swf中调用这个元件,显示到舞台上  二、步骤   bb.swf    1.新建bb.fla,在上面画一个圆    2.选择这个圆,将其转换...
  • djy1135
  • djy1135
  • 2009年11月13日 16:24
  • 5093

VS2013 无法找到资源编译器DLL

VS2013 无法找到资源编译器DLL经过一个多月的实践,一个简单的高光谱数据处理程序编写完成。其基本功能就是实现一个图像融合和分类,现在需要编写一个简单的MFC界面,以供展示。 直接在VS2013...
  • james_616
  • james_616
  • 2017年12月09日 10:29
  • 193
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:资源 |“从蒙圈到入坑”,推荐新一波ML、DL、RL以及数学基础等干货资源
举报原因:
原因补充:

(最多只允许输入30个字)