Poj 1269

原创 2011年01月25日 11:41:00

这是主要是判断两个直线的平面关系,用到的是向量叉积的运算。

主要是判断时候要注意分清判断的先后顺序,从特殊到一般的顺序进行判断,下面我就直接copy一位网友的解题思路,因为他已经很清晰了。

一、问题描述

http://acm.pku.edu.cn/JudgeOnline/problem?id=1269

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。

二、解题思路

先判断两条直线是不是同线,不是的话再判断是否平行,再不是的话就只能是相交的,求出交点。

如何判断是否同线?由叉积的原理知道如果p1p2p3共线的话那么(p2-p1)X(p3-p1)=0。因此如果p1p2p3共线,p1p2p4共线,那么两条直线共线。direction()求叉积,叉积为0说明共线。

如何判断是否平行?由向量可以判断出两直线是否平行。如果两直线平行,那么向量p1p2p3p4也是平等的。即((p1.x-p2.x)*(p3.y-p4.y)-(p1.y-p2.y)*(p3.x-p4.x))==0说明向量平等。

如何求出交点?这里也用到叉积的原理。假设交点为p0(x0,y0)。则有:

(p1-p0)X(p2-p0)=0

(p3-p0)X(p2-p0)=0

展开后即是

(y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0

(y3-y4)x0+(x4-x3)y0+x3y4-x4y3=0

x0,y0作为变量求解二元一次方程组。

假设有二元一次方程组

a1x+b1y+c1=0;

a2x+b2y+c2=0

那么

x=(c1*b2-c2*b1)/(a2*b1-a1*b2);

y=(a2*c1-a1*c2)/(a1*b2-a2*b1);

因为此处两直线不会平行,所以分母不会为0

 

 

 

下面贴上自己的代码:

 

 

/* Wrote by Dream , poj 1269, double 的零值判断不能直接写==0*/

#include <string>

#include <iostream>

#include <algorithm>

#include <cmath>

using namespace std;


struct Point

{

double x;

double y;

};


Point p1,p2,p3,p4;

const double ERR = 0.000001;


void DealData();

double Direction(Point p1, Point p2, Point p3);

int main()

{

//freopen("input.txt","r",stdin);

int n = 0;

scanf("%d", &n);

printf("INTERSECTING LINES OUTPUT/n");

for (int i = 0; i < n; ++i)

{

scanf("%lf %lf %lf %lf %lf %lf %lf %lf", &p1.x, &p1.y, &p2.x, &p2.y, &p3.x, &p3.y, &p4.x, &p4.y);

DealData();

}

printf("END OF OUTPUT/n");


return 0; 

}

/* p1p2 与 p1p3的叉乘 */

double Direction(Point p1, Point p2, Point p3)

{

return (p2.x - p1.x)*(p3.y - p1.y) - (p3.x - p1.x)*(p2.y - p1.y);

}


void DealData()

{

if (fabs(Direction(p1,p2,p3)) <= ERR && fabs(Direction(p1,p2,p4)) <= ERR)

{

printf("LINE/n");

}

else if ((p2.x - p1.x) * (p4.y - p3.y) == (p4.x - p3.x) * (p2.y - p1.y))

{

printf("NONE/n");

}

else

{

double a1 = p1.y - p2.y;

double b1 = p2.x - p1.x;

double c1 = p1.x*p2.y - p2.x*p1.y;

double a2 = p3.y - p4.y;

double b2 = p4.x - p3.x;

double c2 = p3.x*p4.y - p4.x*p3.y;

double x = (b1*c2 - b2*c1)/(a1*b2 - a2*b1);

double y = (a2*c1 - a1*c2)/(a1*b2 - a2*b1);

printf("POINT %.2lf %.2lf/n", x, y);

}

}

版权声明:本文为博主原创文章,未经博主允许不得转载。

poj1269 Intersecting Lines(简单几何,直线平行,共线或相交)

Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1093...
  • u013492736
  • u013492736
  • 2014年08月14日 20:21
  • 425

【计算几何】POJ 1269

计算几何模板题,只要注意精度,判断平行和重合是不要用==0,要写一个dcmp,当绝对值小于等于1e-6时就可以判断是0了。#include #include #include #include ...
  • Casber
  • Casber
  • 2015年05月18日 20:48
  • 112

POJ 1269直线相交

题目:题目链接 题目意思:就是给你两条直线的上的两点的坐标,让你判断这两条直线是不是相交,不相交的话判断是不是平行或者是不是重合。...
  • u010057864
  • u010057864
  • 2013年07月25日 19:44
  • 843

HDU1269 迷宫城堡 (强连通图判定)

题意:判定给出的有向图是不是强连通图 Tarjan算法模板题目 #include #include #include #include #include #include #include #inc...
  • u013167299
  • u013167299
  • 2015年08月26日 19:04
  • 733

【计算几何入门】poj 1269

嗯终于决定开始补计算几何了 从最基础的题目开始做 这题意思就是判断线段的三种位置关系没什么可说的 因为输出double用了 lf 调试了很长时间。。 哦对有个问题,那就是这个题目好像没有考虑两个线...
  • cadongllas
  • cadongllas
  • 2016年04月06日 22:59
  • 115

POJ 1269 计算几何 题解

POJ1269
  • onepointo
  • onepointo
  • 2017年03月29日 07:16
  • 126

poj 1269 判断两直线位置

题意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 思路:分类讨论。先按照斜率是否存在进行分类。然后在各自小类...
  • dumeichen
  • dumeichen
  • 2015年02月07日 17:25
  • 204

POJ 1269 判断直线和直线关系

题意:给两个直线,判断是相交还是重合还是平行,相交给出交点 注意:用一般式判断的时候需要三个比值相等而不是两个 fabs(la.a*lb.b - la.b*lb.a) 代码: #in...
  • u013307987
  • u013307987
  • 2015年05月13日 23:35
  • 177

poj 1269 两条直线的位置关系

题意:直线关系:平行,x
  • u013113958
  • u013113958
  • 2014年08月13日 14:09
  • 312

POJ 1269 直线位置关系的判断

题目意思:给定四个点,前两个点确定一条直线,后两个点确定一条直线,判断两条直线的位置关系;  思路:          两条直线的位置关系分为三种情况:                 1.重合...
  • Yuanchang_Best
  • Yuanchang_Best
  • 2014年08月19日 23:39
  • 445
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Poj 1269
举报原因:
原因补充:

(最多只允许输入30个字)