在图像处理算法研究中,很多时候需要有客观评价指标来对算法的性能进行评价。
比如,在图像复原、图像滤波算法研究中,需要采用客观评价指标来定量的来测试算法恢复出的图像相对于参考图像的好坏程度。
本文介绍文献中提到到三个比较好的客观评价指标——峰值性噪比PSNR、模糊系数K、质量因素Q,其定义分别是:
这三个指标的详细定义见参考文献[1]~[3],下面给出这三个评价指标的MatLab实现。
%说明:本文件为计算两幅视频图象相对于高清晰图象的质量,其中:
%eyechart1.bmp为未处理前质量较差图象,核心区域的截图保存为area_eyechart1.bmp
%eyechart2.bmp为某种算法处理后质量较好图象,核心区域的截图保存为area_eyechart2.bmp
%eyechart3.bmp为高清晰参考图象,核心区域的截图保存为area_eyechart3.bmp
%程序流程为
%第一步:先分别从eyechart1.bmp、eyechart2.bmp、eyechart3.bmp中截取出核心区域,并分别保存为area_eyechart1.bmp、area_eyechart1.bmp、area_eyechart3.bmp
%第二步:以area_eyechart3.bmp为参考图象,计算area_eyechart1.bmp的PSNR、模糊系数KBlur、质量指数Q
%第三步:以area_eyechart3.bmp为参考图象,计算area_eyechart2.bmp的PSNR、模糊系数KBlur、质量指数Q
%程序可直接运行,运行结果为:
%1.保存并显示生成的截图文件area_eyechart1.bmp、area_eyechart1.bmp、area_eyechart3.bmp
%2、在控制台先显示第二步的计算结果,即area_eyechart1.bmp的三个质量指标,