Cadvisor-InfluxDB-Grafana监控实现

原创 2017年09月13日 19:33:10

前言

这一段时间研究docker监控,上次为大家展示如何让Grafana与influxdb产生联系,这次小编简述docker监控一系列的流程包括监控报警措施


Cadvisor

Cadvisor提供了对使用容器用户对资源使用的理解,性能在集装箱中跑,他是一个运行的收获进程,用于收集,聚合,处理,导出关于容器运行的信息,具体来说,他都保留资源隔离的参数和历史上的资源用户,历史上直方图资源用法和网络统计,此数据有容器和机器导出
Cadvisor是可以支持本地的docker容器,并且它还支持其他类型的容器开箱就可以使用,如果没有这个案件,我们支持你可以随时的打开一个问题。Cadvisor容器抽象基于imctfy,所以容器本质是被分级嵌套


Cadvisor在docker上运行

让cadvisor很快的在你的docker上运行,我有一个docker镜像,其中它包含了很多你开始时需要的东西,你可以运行一个cadvisor来监控整个机器,简单的例子
Cadvisor是用的8080的端口

<font size=5><font face="楷体">sudo docker run \
  --volume=/:/rootfs:ro \
  --volume=/var/run:/var/run:rw \
  --volume=/sys:/sys:ro \
  --volume=/var/lib/docker/:/var/lib/docker:ro \
  --volume=/dev/disk/:/dev/disk:ro \
  --publish=8080:8080 \
  --detach=true \
  --name= dc50d241bb91 \
  google/cadvisor:latest

这些设置是关于docker的目录状态,CAdvisor要去遵守它
如果docker的进程使用了用户名空间,则你需要上上述加上Userns=host选择一个docker容器,以便Cadvisor监控他,否则Cadvisor是不能监控docker进程的

Cadvisor在docker上运行Cadvisor绑定

如果你安装的docker是非常版本非常老,那么也不需要担心,因为Cadvisor会自动的减低自己的版本,然后去访问你的机器

Cadvisor在docker上运行Cadvisor独立

Cadvisor是对立的,他没有外部的依赖,当你运行他的时候只需要运行它就可以了,注意有些数据源可能需要根目录的权限,而这个时候Cadvisor会降低权限让你使用相应的功能


InfluxDB 时间序列监控

他是一个分布式时间序列数据库,CAdvisor仅仅显示实时信息,但是不存储信息监控的信息,所以我们需要提供时序数据库用于存储CAdvisor所监控的信息

“`
1. 下载命令为:docker run -d -p 8083:8083 -p 8086:8086 –expose 8090 –expose 8099 –name influxsrv tutum/influxdb:0.9

![这里写图片描述](http://img.blog.csdn.net/20170913192840929?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZHR0dHlj/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)

在query中进行操作

# 创建数据库 create database 'cadvisor'; 
# 创建用户 CREATE USER 'cadvisor' WITH PASSWORD 'cadvisor'
# 用户授权 grant all privileges on 'cadvisor' to 'cadvisor' 
# 授予读写权限 grant WRITE on 'cadvisor' to 'cadvisor' grant READ on 'cadvisor' to 'cadvisor'

这里写图片描述

Influxdb具体操作请查看:http://blog.csdn.net/huwh_/article/details/77899197

Grafana图形显示

Grafana是用于图形显示,他必须与Indexofdb进行关联才可以,从indexofdb中获得信息,然后显示在grafana中
下载grafana的安装命令

docker run -d -p 80:3000 -e INFLUXDB_HOST=localhost -e INFLUXDB_PORT=8086 -e INFLUXDB_NAME=cadvisor -e INFLUXDB_USER=root -e INFLUXDB_PASS=root \
-e GF_SMTP_ENABLED=true -e GF_SMTP_SKIP_VERIFY=true -e GF_SMTP_HOST=smtp.163.com:25 -e GF_SMTP_USER=fkcloudstack@163.com \
-e GF_SMTP_PASSWORD=fuck123 -e GF_SMTP_FROM_ADDRESS=fkcloudstack@163.com --link influxsrv:influxsrv --name grafana-alerting grafana/grafana

数据源
这里写图片描述


报警
这里写图片描述


连接邮件
这里写图片描述


制作面板
这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述


警告配置
这里写图片描述


警告显示(邮件)
这里写图片描述


总结

简单

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

使用InfluxDB+cAdvisor+Grafana配置Docker监控

最近一直在找docker监控的文档,找到一篇不错的文章转来和大家分享!文档来源:How to setup Docker Monitoring 由garyond翻译、校正及整理 Docker监控简介...

Docker 集群监控平台---cAdvisor-InfluxDB-Grafana

目录目录 基础概念 cAdvisor InfluxDB Grafana 镜像列表 启动脚本 influxdb 设置 cAdvisor Grafana 图形配置 示例图请右键打开新标签查看原图 参考链接...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

使用InfluxDB+cAdvisor+Grafana配置Docker监控

Docker主机和容器越来越多,对Docker服务器和容器的监控越来越必要。本文将引导你了解如何通过多个不同组件的配置和协作,以实现Docker监控。Docker

cAdvisor0.24.1+InfluxDB0.13+Grafana4.0.2搭建Docker1.12.3 Swarm集群性能监控平台

目录目录 1基本概念 1什么是cAdvisor 2什么是InfluxDB 3什么是Grafana 2开始安装Docker性能监控组件 1创建一个overlay网络 2安装InfluxDB 013 3安...

cAdvisor、InfluxDB、Grafana搭建Docker1.12性能监控平台

通过cadvisor+influxdb+grafana三者有机结合,打造跨主机容器监控。 优点: 1、跨主机监控,可扩展 2、容器自发现 3、历史数据长期保存 4、自定...

grafana+influxdb+python实现监控cpu、内存

grafana和influxdb下载rpm然后yum install *.rpm influxdb有个web管理界面,不会操作的可以通过这个界面管理数据库,这个web的端口是8083 influx...

ubuntu influxDb + grafana 监控系统

1,influxDb 安装 博主使用的ubuntu系统所以装起来也比较方便 去官网上下载deb的包,直接安装 influxDb 官网地址: https://docs.influxdata.com/in...

cadvisor实现容器监控

随着docker容器云的广泛应用,大量的业务软件运行在容器中,这使得对docker容器的监控越来越重要,具体监控指标总结如下: 首先是容器本身资源使用情况:cpu,内存,网络,磁盘 然后物理机的资...

使用 Collectd + InfluxDB + Grafana 监控主机

本篇文章将介绍一种监控主机的解决方案 —— 在 CentOS 7 系统上搭建 CollectD, InfluxDB 和 Grafana 的组合。

MXtrans + InfluxDB + Grafana实现Kafka性能指标监控

MXtrans + InfluxDB + Grafana实现Kafka性能指标监控 架构 一般系统监控通常分为3部分: 数据采集 分析与转换 展现...
  • zoubf
  • zoubf
  • 2017-02-16 11:26
  • 512
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)