Spark Release 2.2.0 最新版本发布,Spark 2.2.0是Spark 2.x中第一个在生产环境可以使用的版本,对于Spark具有里程碑意义

第2章 Spark 2.X技术及原理 Apache官方网站于2017年7月11日发布了Spark Release 2.2.0版本, Apache Spark 2.2.0版本是Spark 2.x系列上的第三个版本。Spark 2.2.0是Spark 2.x中第一个在生产环境可以使用的版本,对于Spark具有里程碑意义。Spark 2.2.0版本中 Structured Streaming 的实验性标...
阅读(34) 评论(0)

数据倾斜解决方案之六:使用随机数进行Join

30.7数据倾斜解决方案之六:使用随机数进行Join本节讲解使用随机数进行Join,首先讲解什么叫使用随机数进行Join来解决数据倾斜问题,然后讲解如何使用随机数?使用随机数进行Join来解决数据倾斜问题使用场景、案例实战、注意事项等内容。30.7.1什么叫使用随机数进行Join来解决数据倾斜问题?        使用随机数进行Join来解决数据倾斜问题:如果2个RDD的数据中某个Key或者某几个...
阅读(36) 评论(0)

数据倾斜解决方案之三:使用随机Key实现双重聚合

数据倾斜解决方案之三:使用随机Key实现双重聚合本节讲解使用随机Key实现双重聚合,首先讲解什么是随机Key双重聚合;接下来讲解使用随机Key实现双重聚合解决数据倾斜的适用场景、原理分析、案例实战以及使用随机Key实现双重聚合解决数据倾斜注意事项等内容。30.4.1 什么是随机Key双重聚合?随机Key双重聚合是指:Spark分布式计算对RDD调用reduceByKey各算子进行计算,使用对Key...
阅读(120) 评论(0)

Spark面试经典系列之数据倾斜解决方案的“银弹”是什么? 本节我们对Spark数据倾斜解决方案进行回顾和总结

Spark面试经典系列之数据倾斜解决方案的“银弹”是什么? 本节我们对Spark数据倾斜解决方案进行回顾和总结:1、   数据倾斜运行的症状和危害。如果发行数据倾斜,往往发现作业任务运行特别缓慢,出现OOM内存溢出等现象。2、   如果两个RDD进行操作,其中1个RDD数据不是那么多,我们把这个RDD的数据以广播变量的形式包裹起来,广播给整个Cluster集群。这样就可以和另外一个RDD进行map...
阅读(56) 评论(0)

第139课: Spark面试经典系列之数据倾斜解决之对于两个RDD数据量都很大且倾斜的Key特别多如何解决?

第139课:  Spark面试经典系列之数据倾斜解决之对于两个RDD数据量都很大且倾斜的Key特别多如何解决?如果两个RDD的数据量都特别大而且倾斜的Key特别多如何解决:数据量特别大就无法把其中的一个RDD广播出去;如果倾斜的Key值特别多,就无法采用分而治之等方法。例如微信上有海量的数据、淘宝上有海量的数据,如果进行全网扫描就可能遇到这种情况,因为热点特别多,有成千上万个热点。...
阅读(52) 评论(0)

27.1.1.3 Spark SQL 中ANTLR4的应用

27.1.1.3 Spark SQL 中ANTLR4的应用ANTLR是一个强大的解析器生成器,可用于读取,处理,执行或翻译结构化文本或二进制文件。它广泛应用于学术界和工业界,建立各种语言,工具和框架。例如:Twitter搜索使用ANTLR进行查询解析,每天有超过2亿次查询。Hive和Pig语言,Hadoop的数据仓库和分析系统都使用ANTLR。Lex Machina使用ANTLR从法律文本中提取信...
阅读(80) 评论(0)

Spark性能调优之数据倾斜调优一站式解决方案原理与实战

第29章Spark性能调优之数据倾斜调优一站式解决方案原理与实战29.1为什么说数据倾斜是分布式大数据系统的性能噩梦?大数据有基本的三个特性:第一个是数据多样化,有着不同类型的数据,其中包括结构化和非结构化数据;第二个就是庞大的数据量;第三就是数据的流动性,从批处理到流处理。一般在处理大数据的时候都会面对这三个特性的问题,而Spark就是基于内存的分布式计算引擎,以处理高效和稳定著称,是目前处理大...
阅读(1125) 评论(1)

Spark 2.1.0新一代Tungsten 内存管理的模型及其实现类的解析

9.2.2内存管理的模型及其实现类的解析在2016年1月4号发布的 Spark 1.6中,提出了一个新的内存管理模型,即统一内存管理管理模型,对应在Spark 1.5 及之前的版本则使用静态的内存管理模型。关于新的统一内存管理模型,可以参考https://issues.apache.org/jira/secure/attachment/12765646/unified-memory-managem...
阅读(209) 评论(1)

第9章 Spark 2.1.0新一代Tungsten优化引擎彻底解析

第9章  Spark 2.1.0新一代Tungsten优化引擎彻底解析  1.1      概述Spark作为一个一体化多元化的大数据处理通用平台,性能一直是其根本性的追求之一,Spark基于内存迭代(部分基于磁盘迭代)的模型极大的满足了人们对分布式系统处理性能的渴望,Spark是采用Scala+ Java语言编写的,所以运行在JVM平台。当然JVM是一个绝对伟大的平台,因为JVM让整个离散的主机...
阅读(212) 评论(0)

join不产生Shuffle的情况及案例实战

2.9 join不产生Shuffle的情况及案例实战2.9.1 join在什么情况下不产生Shuffle及其运行原理在大数据处理场景中,多表Join是非常常见的一类运算。为了便于求解,通常会将多表join问题转为多个两表连接问题。两表Join的实现算法非常多,一般我们会根据两表的数据特点选取不同的join算法,其中,最常用的两个算法是map-side join和reduce-side join。m...
阅读(125) 评论(0)

11.2 Spark与Alluxio整合原理与实战

l   11.2  Spark与Alluxio整合原理与实战  11.2.1Spark与Alluxio整合原理          Alluxio,以前称为Tachyon,是世界上第一个内存速度虚拟分布式存储系统。它统一数据访问和桥接计算框架和底层存储系统。应用程序只需要连接Alluxio来访问存储在任何底层存储系统中的数据。此外,Alluxio以内存为中心的架构使数据访问速度比现有解决方案更快。在...
阅读(132) 评论(0)

Spark与Job Server整合原理与实战

11.3   Spark与Job Server整合原理与实战 11.3.1Spark与Job Server整合原理     Spark-jobserver 提供了一个 RESTful 接口来提交和管理 spark 的 jobs、jars 和 job contexts。Spark-jobserver项目包含了完整的 Spark job server 的项目,包括单元测试和项目部署脚本。       ...
阅读(119) 评论(0)

8.3 Task全生命周期详解

8.3   Task全生命周期详解     8.3.1 Task的生产过程详解  Task的生产过程详解:1,  当Driver中的CoarseGrainedSchedulerBackend给CoarseGrainedExecutorBackend发送LaunchTask之后,CoarseGrainedExecutorBackend在收到LaunchTask消息后,首先会反序列化TaskDescr...
阅读(131) 评论(0)

8.4.2 ResultTask执行结果与Driver的交互原理及源码详解

8.4.2 ResultTask执行结果与Driver的交互原理及源码详解    Task的run方法调用的时候会导致Task的抽象方法runTask的调用, Task.scala的runTask方法是一个抽象方法。Task包括2种Task:ResultTask、ShuffleMapTask,抽象runTask方法具体的实现由子类的runTask实现。ResultTask的runTask具体实现源...
阅读(114) 评论(0)

ShuffleMapTask执行结果和Driver的交互原理及源码

ShuffleMapTask执行结果和Driver的交互原理及源码Driver中的CoarseGrainedSchedulerBackend给CoarseGrainedExecutorBackend发送launchTasks消息,CoarseGrainedExecutorBackend收到launchTasks消息以后会调用executor.launchTask。 通过launchTask来执行T...
阅读(113) 评论(0)

Shuffle 与 Storage 模块间的交互

7.6   Shuffle 与 Storage 模块间的交互  在Spark中存储模块被抽象成Storage,顾名思义,Storage是存储的意思,代表着Spark中的数据存储系统,负责管理和实现数据块(Block)的存放。其中存取数据的最小单元是Block,数据由不同的Block组成,所有操作都是以Block为单位进行的。本质上讲RDD中的Partition和Storage中的Block是等价的...
阅读(110) 评论(0)

Driver和Master交互原理解析,Driver消息循环体的产生

6.3.2 Driver和Master交互原理解析 Driver和Master进行交互,Master是一个消息循环体,本章节讲解Driver消息循环体的产生过程,Drvier消息循环体生成之后,就可以与Master互相通信。在Spark应用程序提交的时候,我们会提交一个spark-submit脚本,spark-submit脚本中直接运行了org.apache.spark.deploy.SparkS...
阅读(117) 评论(0)

Executor到底是什么时候启动的?

6.4.1 Executor到底是什么时候启动的? 在SparkContext启动之后,StandaloneSchedulerBackend中会new出一个StandaloneAppClient,StandaloneAppClient中有一个名叫ClientEndPoint的内部类,在创建ClientEndpoint会传入Command来指定具体为当前应用程序启动的Executor进行的入口类的名...
阅读(159) 评论(0)

Driver到底是什么时候产生的

6.3   从Application提交的角度看重新审视Driver    6.3.1 Driver到底是什么时候产生的  在SparkContext实例化的时候通过createTaskScheduler来创建TaskSchedulerImpl和StandaloneSchedulerBackend。SparkContext.scala源码:1.       class SparkContext(c...
阅读(133) 评论(0)

ExecutorBackend的异常处理

5.3.4    ExecutorBackend的异常处理   CoarseGrainedExecutorBackend在运行中出现异常,将调用exitExecutor方法进行处理,处理以后系统退出。exitExecutor这个函数可以由其他子类重载来处理,executor执行的退出方式不同。例如:当executor挂掉了,后台程序可能不会让父进程也挂掉。如果需通知Driver,Driver将清理...
阅读(108) 评论(0)
514条 共26页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:253045次
    • 积分:7314
    • 等级:
    • 排名:第2898名
    • 原创:510篇
    • 转载:3篇
    • 译文:1篇
    • 评论:41条
    最新评论
    联系我