第18课:Spark Streaming中空RDD处理及流处理程序优雅的停止

原创 2016年06月01日 19:26:34

第18课:Spark Streaming中空RDD处理及流处理程序优雅的停止
/* 王家林老师授课http://weibo.com/ilovepains  每天晚上20:00YY频道现场授课频道 68917580*/
1 Spark Streaming中空RDD的处理
2 Spark Streaming程序优雅的停止

 


跟51cto和csdn课堂合作,最最重要的是如何贡献社会,祝福每个人拥有美好的人生。
机器学习在spark 2.x基础上授课。

空RDD没做什么事情又要消耗计算资源cpu cores,虽然什么都干,这个必须进行处理。
判断RDD有没有元素。
1、if(rdd.count()){} //不好的地方,count会触发一个job,不要这个方式。
2、if (!rdd.isEmpty){}// 目前有效的方式
3、if (rdd.partitions.isEmpty) 
4、if(rdd.partitions > 0){
   rdd.partitions.map(_)
  
   //rdd.iterator //这个在executor中执行的,现在我们在driver中,无法使用的
   }
5、rdd.partitions.isEmpty //这个不太对 ,不行的

 

 

/**
 * An RDD that has no partitions and no elements.
 */
private[spark] class EmptyRDD[T: ClassTag](sc: SparkContext) extends RDD[T](sc, Nil) {

  override def getPartitions: Array[Partition] = Array.empty

  override def compute(split: Partition, context: TaskContext): Iterator[T] = {
    throw new UnsupportedOperationException("empty RDD")
  }
}

  


  课外资料

http://stackoverflow.com/questions/28454357/spark-efficient-way-to-test-if-an-rdd-is-empty

 

def time(n : Long, f : (RDD[Long]) => Boolean): Unit = {
  val start = System.currentTimeMillis()
  val rdd = sc.parallelize(1L to n, numSlices = 100)
  val result = f(rdd)
  printf("Time: " + (System.currentTimeMillis() - start) + "   Result: " + result)
}

time(1000000000L, rdd => rdd.take(1).length == 0L)
time(1000000000L, rdd => rdd.mapPartitions(it => Iterator(!it.hasNext)).reduce(_&&_))
time(1000000000L, rdd => rdd.count() == 0L)
time(1000000000L, rdd => rdd.takeSample(true, 1).isEmpty)
time(1000000000L, rdd => rdd.fold(0)(_ + _) == 0L)

time(1L, rdd => rdd.take(1).length == 0L)
time(1L, rdd => rdd.mapPartitions(it => Iterator(!it.hasNext)).reduce(_&&_))
time(1L, rdd => rdd.count() == 0L)
time(1L, rdd => rdd.takeSample(true, 1).isEmpty)
time(1L, rdd => rdd.fold(0)(_ + _) == 0L)

time(0L, rdd => rdd.take(1).length == 0L)
time(0L, rdd => rdd.mapPartitions(it => Iterator(!it.hasNext)).reduce(_&&_))
time(0L, rdd => rdd.count() == 0L)
time(0L, rdd => rdd.takeSample(true, 1).isEmpty)
time(0L, rdd => rdd.fold(0)(_ + _) == 0L)

 

 

 

 

On my local machine with 3 worker cores I got these results

Time:    21   Result: false
Time:    75   Result: false
Time:  8664   Result: false
Time: 18266   Result: false
Time: 23836   Result: false

Time:   113   Result: false
Time:   101   Result: false
Time:    68   Result: false
Time:   221   Result: false
Time:    46   Result: false

Time:    79   Result: true
Time:    93   Result: true
Time:    79   Result: true
Time:   100   Result: true
Time:    64   Result: true

 

版权声明:本文根据家林大神Spark系列课程整理编写,未经博主允许不得转载,转载请标注本博客URL。

相关文章推荐

大数据IMF传奇行动绝密课程第120课:Spark Streaming性能优化:如何在End-to-End生产环境下安全高效地把结果数据存入HBase中

Spark Streaming性能优化:如何在End-to-End生产环境下安全高效地把结果数据存入HBase中1、生产环境下End-to-End的流处理程序 2、Spark Streaming安全...

第116课: Spark Streaming性能优化:如何在毫秒内处理处理大吞吐量的和数据波动比较大 的程序

第116课:  Spark Streaming性能优化:如何在毫秒内处理处理大吞吐量的和数据波动比较大 的程序 1 大吞吐量和数据波动比较大的程序 2 Spark streaming中的解...

通过Spark Streaming的foreachRDD把处理后的数据写入外部存储系统中

本博文主要内容包括: 技术实现foreachRDD与foreachPartition解析 foreachRDD与foreachPartition实现实战 一:技术实现foreach解析:1、首先我们看...

Spark Streaming性能优化: 如何在生成环境下应对流数据峰值巨变

1、为什么引入Backpressure 默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > ...

第4课:Spark Streaming的Exactly-One的事务处理和不重复输出彻底掌握

作者:大数据研究人员:谢彪 一、事务场景 :   以银行转帐一次为例,A用户转账给B用户,如何保证事务的一致性,即A用户能够转出且只能转出一次,B用户能够收到且只能收到一次。    Spar...

Spark 定制版:018~Spark Streaming中空RDD处理及流处理程序优雅的停止

本讲内容:a. Spark Streaming中的空RDD处理 b. Spark Streaming程序的停止注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)...

程序优雅的退出 处理unhandler exception_不提示错误框

程序是由代码编译出来的,而代码是由人写的。人非圣贤,孰能无过。所以由人写的代码有缺陷是很正常的。当然很多异常都在开发阶段被考虑到而添加了处理代码,或者用try/catch对可能出现异常的地方进行额外的...

第8课:Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考

本期内容 1. DStream与RDD关系彻底研究 2. Streaming中RDD的生成彻底研究

第8课:Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考

本期内容 Dstream与rdd关系彻底研究 Dstream中rdd生成彻底研究从整个sparkstreaming角度来考虑,rdd分为三个方面的内容: a.怎么生成的,依靠什么生成的; b....
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)