第116课: Spark Streaming性能优化:如何在毫秒内处理处理大吞吐量的和数据波动比较大 的程序

本文讨论了在Spark Streaming中如何优化性能,确保在处理高吞吐量和数据波动时仍能实现低延迟。通过合理配置线程池,避免超过Cores限制的并行线程,以及利用Spark调度模型进行异步操作,确保数据完整性和作业效率。业务逻辑集中在foreachRDD操作中,Stage内部并行,外部串行,Task由Executor线程池处理,实现高效低延迟的数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第116课:  Spark Streaming性能优化:如何在毫秒内处理处理大吞吐量的和数据波动比较大 的程序


1 大吞吐量和数据波动比较大的程序
2 Spark streaming中的解决方案


-数据规模非常大,数据的处理会大于batch interval
-数据波动非常大,峰值非常大,让人提心吊胆的地方
办法:加硬件: 内存、cpu cores 但要花公司的钱
      限流:log日志观察;如双11,限流会损失交易
      增加batch的时间,但波峰之外的时间不需要
上述办法都不理想。


唯一的有效的效果显著的办法,不要等待!!什么意思?就是无论batch duration数据大小和处理的复杂度,都会立即完
成当前batch的处理,然后立即去处理下一个batch的任务!!


怎么做?此时既要完成业务计算,又要达到毫秒级别的延迟!
一个可行的办法是:Spark Streaming的业务处理逻辑放在线程池中!!!而绝妙的精彩之处在于Spark Streaming执行的时候业务
逻辑就是以task的方式放在线
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

段智华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值