Unix/Linux IPC及线程间通信总结

原创 2012年03月23日 08:24:59

Unix/Linux IPC及线程间通信总结

一、互斥与同步

1.互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。

2.同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源.

3.同步是一种更为复杂的互斥,而互斥是一种特殊的同步.

二、通信与同步
进程间同步本身也是一种进程间通信(因为涉及信息的交换),当然也是一种原始的进程间通信,但同时又是更高级的进程间通信机制的基石。
对线程亦然.

三、临界区(Critical section)与互斥体(Mutex)的区别

1、临界区只能用于对象在同一进程里线程间的互斥访问;互斥体可以用于对象进程间或线程间的互斥访问。
2、临界区是非内核对象,只在用户态进行锁操作,速度快;互斥体是内核对象,在核心态进行锁操作,速度慢。
3、临界区和互斥体在Windows平台都下可用;Linux下只有互斥体可用。

四、linux IPC
1.经典IPC:
(1)管道pipe、命名管道fifo       //最基本最常用

(2)消息队列、信号量semaphore、共享内存
//分为Posix IPC和System V IPC,共享内存是运行在同一台机器上的进程间通信最快的方式

2高级IPC: 流管道、命名流管道
(以上是限于同一台主机的各个进程间的IPC)

3.支持不同主机上各个进程的IPC:套接口socket、流

五、线程间通信机制:
1.互斥锁
2.信号量
3.读写锁
4.条件变量

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Unix/Linux IPC及线程间通信总结

Unix/Linux IPC及线程间通信总结 一、互斥与同步 1.互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。 ...

Unix/Linux IPC及线程间通信总结

一、互斥与同步 1.互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。 2.同步:是指在互斥的基础上(大多数情况),通过...
  • maopig
  • maopig
  • 2011-11-08 22:45
  • 1196

Linux的进程/线程间通信方式总结

Linux系统中的进程间通信方式主要以下几种:同一主机上的进程通信方式   * UNIX进程间通信方式: 包括管道(PIPE), 有名管道(FIFO), 和信号(Signal)   * System ...

Linux的进程/线程间通信方式总结

Linux系统中的进程间通信方式主要以下几种: 同一主机上的进程通信方式    * UNIX进程间通信方式: 包括管道(PIPE), 有名管道(FIFO), 和信号(Signal) ...

Linux的进程/线程间通信方式总结

转载自http://blog.csdn.net/kobejayandy/article/details/18863543 Linux系统中的进程间通信方式主要以下几种: 同一主机上的进程通...

Linux的进程/线程间通信方式总结

Linux系统中的进程间通信方式主要以下几种: 同一主机上的进程通信方式    * UNIX进程间通信方式: 包括管道(PIPE), 有名管道(FIFO), 和信号(Signal) ...

Linux的进程/线程间通信方式总结

Linux系统中的进程间通信方式主要以下几种: 同一主机上的进程通信方式    * UNIX进程间通信方式: 包括管道(PIPE), 有名管道(FIFO), 和信号(Signal) ...

Linux的进程/线程间通信方式总结

转自http://blog.csdn.net/kobejayandy/article/details/18863543 Linux的进程/线程间通信方式总结 2...

Linux的进程/线程间通信方式总结

Linux系统中的进程间通信方式主要以下几种: 同一主机上的进程通信方式    * UNIX进程间通信方式: 包括管道(PIPE), 有名管道(FIFO), 和信号(Signal) ...

linux高级编程基础系列:线程间通信

线程间通信机制: 线程是一种轻量级的进程。 进程的通信机制主要包括无名管道、有名管道、消息队列、信号量、共享内存以及信号等。这些机制都是由linux内核来维护的,实现起来都比较复杂,而且占用大量的系统...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)