opencv:边缘特征

原创 2015年11月20日 10:54:36

越来越发现,英文技术资料的质量逼中文的好太多了。以后尽量不看中文的

本文是这一帖子的笔记:http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_features/py_contour_features.html


内容提要:

一.opencv中常用的边缘特征有哪些

二.上述特征用什么语句可以求出




1. Moments(矩)

2. Contour Area

Contour area is given by the function cv2.contourArea() or from moments, M[‘m00’].

3. Contour Perimeter 周长

 cv2.arcLength()

4. Contour Approximation 近似轮廓,明明不是方形可以匹配成方形,具体算法Ramer–Douglas–Peucker algorithm (https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm)


5.Convex Hull 

cv2.convexHull()

得到凸形的轮廓,进而还能计算凹进去的部分,即图中箭头部分。

 

6.Checking Convexity 检查一个curve是不是凸形的

cv2.isContourConvex()

7. Bounding Rectangle 框住目标的矩形

7.a. Straight Bounding Rectangle 竖直的

7.b. Rotated Rectangle 角度可旋转的



8. Minimum Enclosing Circle 框住目标的最小圆形


9.Fitting an Ellipse 与目标最匹配的椭圆,但是不知如何匹配的


10.Fitting a Line 与目标最匹配的直线,但也不知是如何匹配的


总结:在我们识别项目里可以用到哪些呢?

1.矩可以用来识别,区分目标

4.可以用来将有小的边缘波动的目标与样本进行匹配?并衡量匹配程度?

5.包括目标的凸形可以用来分辨目标,因为粗看看轮廓

10.可否用来提取目标的主轴?


下一步的计划:

1.Contour Approximation 近似轮廓的具体算法Ramer–Douglas–Peucker algorithm,可以学一学

2.Fitting a Line 与目标最匹配的直线,但也不知是如何匹配的,可以了解下

3.同一系列的下一篇帖子:轮廓的属性:http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_properties/py_contour_properties.html(已完成)

4.同一系列其他帖子,知道opencv都有哪些操作:














opencv提取图像边缘特征sobel算子的运用

计算机视觉领域的一种重要处理方法。主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测。在技术上,它是一个离散的一阶差分算子,用来计算图像亮度函数的一阶梯度之近似值。在图像的任何一点使用此算...

图像局部特征学习(笔记1之Canny边缘检测算子)

Canny首先提出的一个概念就是边缘检测算子优劣的三条标准。 总结下: 算子对噪声是否敏感,是否存在漏检的情况 算子的边缘定位是否准确,检测到的边缘与实际边缘的距离尽可能小 对每条边缘只有一次响...

SIFT检测特征点之去除边缘不稳定噪声点

根据论文以及这位女侠 http://blog.csdn.net/abcjennifer/article/details/7639681 所述,在用SIFT得到候选特征点之后  还要进一步精确特征点...

图像特征提取:Sobel边缘检测

FROM:http://www.cnblogs.com/ronny/p/3387575.html 前言 点和线是做图像分析时两个最重要的特征,而线条往往反映了物体的轮廓,对图像中边...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:opencv:边缘特征
举报原因:
原因补充:

(最多只允许输入30个字)