关闭

hdoj 1166 敌兵布阵 【线段树(区间求和&&更新节点)】

146人阅读 评论(0) 收藏 举报
分类:

敌兵布阵

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 63436    Accepted Submission(s): 26759


Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
 

Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
 

Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
 

Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
 

Sample Output
Case 1: 6 33 59
 

Author
Windbreaker

思路:

先建立一颗树,这个树的每一个节点都是它的两个孩子节点的和,然后在更新节点的时候,直接在整个区间里面进行递归查找,然后在回溯的时候,从叶子节点开始,将每个包含有这个点的区间都要进行更新,其中加一个数和减一个数都要用到这个函数;然后在写一个求一个区间的个的函数,然后将在这个区间里面的子区间里面的和都返回加到sum上,然后sum的最终的值就是所要求的区间的所有值的和了!

代码:‘


#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int tree[200005];
char que[20];
int max(int a,int b)
{
	if(a<b)
		return b;
	return a;
}
void build(int rt,int l,int r)//建立一个节点等于两个孩子的和的树 
{
	if(l==r)//输入叶子节点 
	{
		scanf("%d",&tree[rt]);
		return;
	}
	int mid=(l+r)>>1,pt=rt<<1;//算区间中点的值,和对应的区间下标 
	build(pt,l,mid);//建立左子树 
	build(pt|1,mid+1,r);//建立右子树 
	tree[rt]=tree[pt]+tree[pt|1];//给他们的双亲节点赋值 
}
void updata(int rt,int l,int r,int a,int b)//更新节点的值 
{//使下标为a的节点的值增加b的大小 
	if(l==r)//给叶子节点更新 
	{
		tree[rt]+=b;
		return;
	}
	int mid=(l+r)>>1,pt=rt<<1;//算区间中点和左边的区间对应的下标 
	if(a<=mid)//如果a在左区间,则更新左区间对应的所有的节点的值 
	{
		updata(pt,l,mid,a,b);//l到mid区间对应的数组的下标为pt 
	}
	if(a>mid)//如果a在有区间上,那么就更新所有的有区间上节点的值 
	{
		updata(pt|1,mid+1,r,a,b);
	}
	tree[rt]=tree[pt]+tree[pt|1];//双亲节点的值为两个孩子节点的和 
}
int query(int rt,int l,int r,int a,int b)//求下标在a到b这个范围内所有的数的值 
{
	if(a<=l&&b>=r)//如果l到r这个区间在a,b这个范围内,那么说明l到r这个区间在a,b这个区间里面 
	{//也就是直接返回l到r这个区间内所有值的和了 
		return tree[rt];
	}
	int mid=(l+r)>>1,pt=rt<<1,sum=0;
	if(a<=mid)//如果a到b这个范围内在左边这个区间(l,mid)里有交集的话,就将其在a,b这个范围内的值加到sum上 
	{
		sum+=query(pt,l,mid,a,b);
	}
	if(b>mid)//在右边有交集,则将右边的在a,b范围内的加到sum上 
	{
		sum+=query(pt|1,mid+1,r,a,b);
	}
	return sum;//将求出的和sum返回 
}
int main()
{
	int T,N;
	int n;
	scanf("%d",&T);
	N=T;
	while(T--)
	{
		scanf("%d",&n);
		build(1,1,n);
		getchar();
		printf("Case %d:\n",N-T);
		while(scanf("%s",que)!=EOF)
		{
			int a,b;
			if(que[0]=='E')
			{
				break;
			} 
			else if(que[0]=='A')
			{
				scanf("%d%d",&a,&b);
				updata(1,1,n,a,b);
			}
			else if(que[0]=='S')
			{
				scanf("%d%d",&a,&b);
				updata(1,1,n,a,-b);	
			}
			else if(que[0]=='Q')	
			{
				scanf("%d%d",&a,&b);
				printf("%d\n",query(1,1,n,a,b));
			}
		}
	}
	return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:69573次
    • 积分:3473
    • 等级:
    • 排名:第9518名
    • 原创:291篇
    • 转载:4篇
    • 译文:0篇
    • 评论:5条
    最新评论