# Educational Codeforces Round 16

198人阅读 评论(0)

A. King Moves

The only king stands on the standard chess board. You are given his position in format “cd”, where c is the column from ‘a’ to ‘h’ and d is the row from ‘1’ to ‘8’. Find the number of moves permitted for the king.

King moves from the position e4

Input

The only line contains the king’s position in the format “cd”, where ‘c’ is the column from ‘a’ to ‘h’ and ‘d’ is the row from ‘1’ to ‘8’.
Output

Print the only integer x — the number of moves permitted for the king.

Example
Input

e4


Output

8


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LiangJiaJun main
using namespace std;
char s[4];
int x,y;
bool genc(int a){
return (a == 8 || a == 1);
}
int LiangJiaJun(){
scanf("%s",s+1);
x=s[1]-'a'+1;y=s[2]-'0';
if(genc(x)&&genc(y)){
puts("3");
return 0;
}
if( (genc(x)&&!genc(y)) || (!genc(x)&&genc(y)) ){
puts("5");return 0;
}
if(!genc(x)&&!genc(y)){
puts("8");return 0;
}
return 0;
}


B. Optimal Point on a Line

You are given n points on a line with their coordinates xi. Find the point x so the sum of distances to the given points is minimal.
Input

The first line contains integer n (1 ≤ n ≤ 3·105) — the number of points on the line.

The second line contains n integers xi ( - 109 ≤ xi ≤ 109) — the coordinates of the given n points.
Output

Print the only integer x — the position of the optimal point on the line. If there are several optimal points print the position of the leftmost one. It is guaranteed that the answer is always the integer.

Example
Input

4
1 2 3 4


Output

2


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define LiangJiaJun main
using namespace std;
int n,a[300004];
long long xp,xr;
int LiangJiaJun(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(a+1,a+n+1);
if(n % 2 == 0){
for(int i=1;i<=n;i++)xp += abs(a[i]-a[n/2]);
for(int i=1;i<=n;i++)xr += abs(a[i]-a[n/2+1]);
if(xr < xp) printf("%d\n",a[n/2+1]);
else printf("%d\n",a[n/2]);
}
else {
printf("%d\n",a[n/2+1]);
}
return 0;
}


C. Magic Odd Square

Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both main diagonals are odd.
Input

The only line contains odd integer n (1 ≤ n ≤ 49).
Output

Print n lines with n integers. All the integers should be different and from 1 to n2. The sum in each row, column and both main diagonals should be odd.

Examples
Input

1


Output

1


Input

3


Output

2 1 4
3 5 7
6 9 8


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define LiangJiaJun main
using namespace std;
int a[54][54],n;
int LiangJiaJun(){
scanf("%d",&n);
a[1][n/2+1] = 1;
int nowx = 1, nowy = n/2+1 , k = 2;
while(k<=n*n){
bool t=0;
int p=nowx-1,q=nowy+1;
if(p>0&&q<=n){
if(a[p][q]==0)a[p][q]=k;else t=1;
if(!t){nowx=p;nowy=q;++k;continue;}
}
if(p<=0&&q<=n){
p=n;
if(a[p][q]==0)a[p][q]=k;else t=1;
if(!t){nowx=p;nowy=q;++k;continue;}
}
if(p>0&&q>n){
q=1;
if(a[p][q]==0)a[p][q]=k;else t=1;
if(!t){nowx=p;nowy=q;++k;continue;}
}
p=nowx+1;q=nowy;
nowx=p;nowy=q;
a[p][q]=k;
k++;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
printf("%d ",a[i][j]);
}
printf("\n");
}
return 0;
}


D. Two Arithmetic Progressions

You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such that L ≤ x ≤ R and x = a1k’ + b1 = a2l’ + b2, for some integers k’, l’ ≥ 0.
Input

The only line contains six integers a1, b1, a2, b2, L, R (0 < a1, a2 ≤ 2·10^9,  - 2·10^9 ≤ b1, b2, L, R ≤ 2·10^9, L ≤ R).
Output

Print the desired number of integers x.

Examples
Input

2 0 3 3 5 21


Output

3


Input

2 4 3 0 6 17


Output

2


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define LiangJiaJun main
using namespace std;
long long a1,b1,a2,b2,L,R;
long long gcd(long long x,long long y){return y==0?x:gcd(y,x%y);}
long long res1,res2,x,lcm,temp;
bool ok=0;
int LiangJiaJun(){
scanf("%I64d%I64d%I64d%I64d%I64d%I64d",&a1,&b1,&a2,&b2,&L,&R);
if(a1<a2){
swap(a1,a2);
swap(b1,b2);
}
L=max(L,max(b1,b2));
lcm=(a1*a2)/gcd(a1,a2);
res1=(b1%a1+a1)%a1;
res2=(b2%a2+a2)%a2;
temp=x=L+(a1+res1-(L%a1))%a1;
while(x<=temp+lcm && x<=R){
if(((x%a2)+a2)%a2 == res2){
ok=1; break;
}
else x+=a1;
}
if(ok)printf("%I64d\n",(R-x)/lcm+1);
else printf("0\n");
return 0;
}



E. Generate a String

zscoder wants to generate an input file for some programming competition problem.

His input is a string consisting of n letters ‘a’. He is too lazy to write a generator so he will manually generate the input in a text editor.

Initially, the text editor is empty. It takes him x seconds to insert or delete a letter ‘a’ from the text file and y seconds to copy the contents of the entire text file, and duplicate it.

zscoder wants to find the minimum amount of time needed for him to create the input file of exactly n letters ‘a’. Help him to determine the amount of time needed to generate the input.
Input

The only line contains three integers n, x and y (1 ≤ n ≤ 107, 1 ≤ x, y ≤ 109) — the number of letters ‘a’ in the input file and the parameters from the problem statement.
Output

Print the only integer t — the minimum amount of time needed to generate the input file.

Examples
Input

8 1 1


Output

4


Input

8 1 10


Output

8


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define LiangJiaJun main
using namespace std;
long long f[20000004];
int n,x,y;
int LiangJiaJun(){
scanf("%d%d%d",&n,&x,&y);
for(int i=1;i<=n;i++)f[i]=min(f[i-1]+x,f[(i+1)/2]+y+x*(i%2==1));
cout<<f[n]<<endl;
return 0;
}


0
0

个人资料
• 访问：18662次
• 积分：1377
• 等级：
• 排名：千里之外
• 原创：125篇
• 转载：1篇
• 译文：0篇
• 评论：4条
友情链接
最新评论