递推+矩阵快速幂

原创 2016年08月28日 20:54:53

题目描述
由于长度为一的方块只有一种方案,长度为二的有四种方案(不包含长度为一中的情况),长度为三的有两种方案(不包含长度为二中的情况),得递推式:
f[i] = f[i-1] + f[i-2] * 4 + f[i-3] * 2;
由于n <= 10 ^ 18, 考虑使用矩阵快速幂,用如下矩阵存状态:
f[i], 0, 0
f[i+1], 0, 0
f[i+2], 0, 0
用如下矩阵转移状态:
0, 1, 0
0, 0, 1
2, 4, 1
代码:

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>

#define For(i,j,k) for(LL i = j;i <= k;i ++)
const int Mod = 1000000007;
typedef long long LL;

struct Matrix{
    const static int N = 3;
    LL M[N][N];

    Matrix(int c = 0){
        memset(M, 0, sizeof(M));
        if(c == 1)
            For(i,0,N-1)
                M[i][i] = 1;
        if(c == 2){
            M[0][1] = M[1][2] = M[2][2] = 1;
            M[2][0] = 2, M[2][1] = 4;
        }
        if(c == 3){
            M[0][0] = M[1][0] = 1;
            M[2][0] = 5;
        }
    }

    Matrix operator * (const Matrix &B) const{
        Matrix C;
        For(i,0,N-1)
            For(j,0,N-1)
                For(k,0,N-1)
                    C.M[i][j] = (C.M[i][j] + M[i][k] * B.M[k][j]) % Mod;
        return C;
    }

    Matrix operator ^ (LL exp) const{
        Matrix Ans(1), T = *this;
        while(exp){
            if(exp & 1) Ans = Ans * T;
            T = T * T;
            exp >>= 1;
        }
        return Ans;
    }

    void print() const{
        For(i,0,N-1)
            For(j,0,N-1)
                printf("%lld%c", M[i][j], j == N - 1 ? '\n' : ' ');
    }

};

LL n;
int main(){
    scanf("%lld", &n);
    Matrix Ans = (Matrix(2) ^ n) * 3;
    printf("%lld\n", Ans.M[0][0]);
    return 0;
}
版权声明:本文为博主原创文章,转载需注明原文地址。

51nod 1126 求递推序列的第N项 矩阵快速幂

题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1126题意:有一个序列是这样定义的:f(1) = 1, f(2) =...

【POJ 3420】Quad Tiling(dp|递推 +矩阵快速幂)

秋意渐浓,阳光西斜,遍地金黄

【HDU5895 2016 ACM ICPC Asia Regional Shenyang Online D】【公式转化 矩阵快速幂 欧拉定义】Mathematician QSC 递推数列前n平方项和

Mathematician QSC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Oth...

hrbust 1375 The Active Leyni【暴力打表+递推+矩阵快速幂】

The Active Leyni Time Limit: 1000 MS Memory Limit: 65536 K   Total Submit: 111(43 ...

[HDU1588]Gauss Fibonacci(递推+矩阵快速幂)

不觉碧山暮,但闻万壑松。

HihoCoder1151 骨牌覆盖问题·二(矩阵快速幂,递推)

题目: 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3...

HDU 2604 Queuing (递推+ 矩阵快速幂)

Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...
  • sizaif
  • sizaif
  • 2017年08月10日 10:30
  • 105

【51Nod】1126 - 求递推数列的第N项(矩阵快速幂 & C++运算符重载)

题目链接:点击打开题目代码如下:#include #include #include #include #include #include #include using namespac...
  • wyg1997
  • wyg1997
  • 2017年03月04日 14:59
  • 223

NYOJ 1075 (递推 + 矩阵快速幂)

“红色病毒”问题 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 医学研究者最近发现了一种新病毒,因为其蔓延速度与曾经在Internet上传播的“红色代码”不相上下,故被...

【递推+矩阵快速幂】【HDU2604】【Queuing】

Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:递推+矩阵快速幂
举报原因:
原因补充:

(最多只允许输入30个字)