POJ 1639 度限制最小生成树Prim

原创 2016年10月12日 00:17:40

题意:给出n条无向带权边,求所有点的最小生成树,其中“Park”的度数不超过最后输入的k,输入保证有解。

思路:思路其实很好理解,分为几个步骤:

1.当然将“Park”作为根节点,一开始先删掉它,则原图会分为m个连通分量,分别记录它们的最小生成树,并记录每个分量与根的最小边,于是我们得到了根度数为m时的最小生成树。若k < m,则无解。

2.然后考虑将生成树上的一些边替换成与根相邻的边,若根与节点v有边连接且这条边不在生成树上,则假设连接这条边,那么我们必须删去一条原生成树的边,且这条边一定是原生成树中v到根节点的链上最长的边(我的做法是每次开始前DFS维护所有节点的这条对应边),设其长为len,则生成树大小可减少 len - w[root][v]。每次找到一条最优的边,直到根度数达到k或生成树已经最小。

代码:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <map>

#define For(i,j,k) for(int i = j;i <= (k);i ++)
#define Set(i,j) memset(i, j, sizeof(i))

using namespace std;
const int N = 25;
int G[N][N], f[N][N], n, m, k;
map<string, int> M;

int dis[N], be[N], pre[N], cnt;

int Prim(int h){
	Set(dis, 0x3f);
	dis[h] = 0, ++cnt;
	int ret = 0, Mindis = 1e9, Mk;
	For(i,1,n-1){
		int k = 1;
		For(j,2,n) if(!be[j] && dis[j] < dis[k]) k = j;
		if(k == 1)break;
		be[k] = cnt, ret += dis[k];
		if(G[k][1] >= 0 && Mindis > G[k][1])Mindis = G[k][1], Mk = k;
		For(j,2,n)
			if(!be[j] && G[k][j] >= 0 && dis[j] > G[k][j])
				dis[j] = G[k][j], pre[j] = k;
		if(pre[k]) f[k][pre[k]] = f[pre[k]][k] = 0;
	}
	f[Mk][1] = f[1][Mk] = 0;
	return ret + Mindis;
}

int Mx[N], My[N], Mv[N];
void update(int h, int fa){
	For(i,2,n) 
		if(!f[h][i] && G[h][i] >= 0 && i != fa){
			Mx[i] = Mx[h], My[i] = My[h], Mv[i] = Mv[h];
			if(G[h][i] > Mv[h]) Mx[i] = h, My[i] = i, Mv[i] = G[h][i];
			update(i, h);
		}
}

void solve(){
	int ret = 0;
	For(i,2,n) if(!be[i])ret += Prim(i);
	int c = cnt;
	if(c > k) return;
	while(c < k){
		++c;
		update(1, 0);
		int Max = 0, p;
		For(i,2,n)
			if(G[1][i] >= 0 && f[1][i] && Mv[i] - G[1][i] > Max) Max = Mv[i] - G[1][i], p = i;
		if(!Max)break;
		ret -= Max;
		f[Mx[p]][My[p]] = f[My[p]][Mx[p]] = 1;
		f[1][p] = f[p][1] = 0;
	}
	printf("Total miles driven: %d\n", ret);
}

int main(){
	Set(G, -1);
	M["Park"] = 1;
	scanf("%d", &m);
	For(i,1,m){
		char x[15], y[15];
		int w;
		scanf("%s%s%d", x, y, &w);
		if(!M.count(x))M[x] = M.size();
		if(!M.count(y))M[y] = M.size();
		G[M[x]][M[y]] = G[M[y]][M[x]] = w;
		f[M[x]][M[y]] = f[M[y]][M[x]] = 1;
	}
	n = M.size();
	scanf("%d", &k);
	solve();
	return 0;
}


版权声明:本文为博主原创文章,转载需注明原文地址。

相关文章推荐

[POJ 1639] 单度限制最小生成树

POJ 1639 Picnic Planning 单度限制最小生成树
  • SIOFive
  • SIOFive
  • 2014年04月10日 01:05
  • 916

poj 1639 Picnic Planning 单度限制的最小生成树

题意: 给一个无向图连通图,求它的最小生成树,生成树满足条件点v0的度小于等于limit。 分析: 一般有度限制的最小生成树问题是np完全的,但单点度限制就比较简单了,先在原图上求不含v0的最小...
  • sepNINE
  • sepNINE
  • 2014年11月23日 10:25
  • 364

【POJ】1639 Picnic Planning 度限制最小生成树

Picnic Planning Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9137 ...

POJ 1639 Picnic Planning (k度限制最小生成树)

题目类型  次小生成树 题目意思 给出 n 个点 m 条边问最小生成树是否唯一 (n 解题方法 先用kruscal算法求出最小生成树和构成最小生成树的边 ...

POJ 1639:Picnic Planning(最小度限制生成树)

Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 7356  ...
  • wugj03
  • wugj03
  • 2012年04月18日 12:34
  • 796

P300-野餐计划(POJ-1639最小度限制生成树)

黑书上的例题,具体模型是求一个无向图的最小生成树,其中有一个点的度有限制(假设为 k)。   要求最小 k 度生成树,我们可以按照下面的步骤来做: 设有度限制的点为 V0 ,V0称为根节点 1...

poj1639最小度限制生成树(kruscal+邻接表)

一、.思路 设限制结点为des.  1. 求去掉des的最小生成树,此时求出来的是最小生成森林  2.添加des到各连通分量的边,当然取最小的边。  3.此时得到m度的生成树,我们要求的是小于...
  • ysjjovo
  • ysjjovo
  • 2011年08月13日 11:51
  • 461

POJ 1639 k度限制生成树

题意就是求最小生成树  但是有一个顶点的度必须不大于k 具体的方法网上都有,但是代码写起来之复杂难以令人想象,我由于代码能力还太弱,导致只能看着别人的代码重写一遍,优化了一些部分。 1.求出除...

POJ1639 Picnic Planning(度限制生成树)

黑书上的例题,所以题意就不啰嗦了,具体模型是求一个无向图的最小生成树,其中有一个点的度有限制(假设为 k)。 要求最小 k 度生成树,我们可以按照下面的步骤来做: 设有度限制的点为 V0 ...

poj 1639 Picnic Planning 最小K度限制生成树

Picnic PlanningTime Limit: 5000MS Memory Limit: 10000KTotal Submissions: 5846 Accepted: 1934Descript...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ 1639 度限制最小生成树Prim
举报原因:
原因补充:

(最多只允许输入30个字)