HDU 6109 百度之星2017 1002 数据分割(并查集+set)

原创 2017年08月13日 13:27:06

题目链接

百度之星2017 1002

分析

个比赛的时候想到了并查集+set的做法,只是评测实在太慢了,也没仔细想set处理合并的复杂度,赛后发现原来直接暴力合并set就行了 (不能分析复杂度是多少)

AC code

//Problem : 6109 ( 数据分割 )     Judge Status : Accepted
//RunId : 21701687    Language : G++    Author : zouzhitao
//Code Render Status : Rendered By HDOJ G++ Code Render Version 0.01 Beta
#include<bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define PI acos(-1)
#define fi first
#define se second
#define INF 0x3f3f3f3f
#define INF64 0x3f3f3f3f3f3f3f3f
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define ms(x,v) memset((x),(v),sizeof(x))
#define scint(x) scanf("%d",&x );
#define scf(x) scanf("%lf",&x );
#define eps 1e-10
#define dcmp(x) (fabs(x) < eps? 0:((x) <0?-1:1))
#define lc o<<1
#define rc o<<1|1
using namespace std;
typedef long long LL;
typedef long double DB;
typedef pair<int,int> Pair;
const int maxn = 1e5+10;
const int maxv = 1e6+10;

std::vector<int> ans;

set<int> x[maxn],st;
int p[maxn];
int FIND(int x){
    return p[x] == x? x :p[x] = FIND(p[x]);
}
int main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);

    int n;cin>>n;
    for(int i=1 ; i<= maxn; ++i)p[i] = i;
    int last =0;
    for(int i=1 ; i<=n ; ++i){
        int a,b,c;cin>>a>>b>>c;
        int fa = FIND(a) , fb = FIND(b);
        st.insert(a);st.insert(b);
        if(c){
            if(x[fa].count(fb) || x[fb].count(fa)){
                ans.pb(i - last);
                last = i;
                for(auto e: st){
                    p[e] = e;
                    x[e].clear();
                }
                st.clear();
            }else if(fa != fb){
                //合并集合
                if(x[fa].size() > x[fb].size())swap(fa,fb);
                p[fa] = fb;
                for(auto e : x[fa]){
                    x[fb].insert(e);
                    x[e].erase(fa);
                    x[e].insert(fb);
                }
                x[fa].clear();
            }
        }else {
            x[a].insert(b);x[b].insert(a);
            if(fa  == fb){
                ans.pb(i - last);
                last = i;
                for(auto e : st){
                    p[e] = e;
                    x[e].clear();
                }
                st.clear();
            }
        }
    }
    std::cout << ans.size() << '\n';
    for(auto e : ans)std::cout << e << '\n';
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

2017百度之星资格赛 1002 度度熊的王国战略(并查集 or 无向图最小割)

题目链接:点击打开链接 题意很容易理解,基本上这个题意就是让你去考虑无向图的最小割,无奈只会用模版,还没想好怎么用堆优化Stoer-Wagner算法,TLE......而且百度把这题的时间放宽到了20...
  • ccDLlyy
  • ccDLlyy
  • 2017年08月07日 00:25
  • 342

hdu3461 Code Lock(并查集+快速幂)

Code LockTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) Total ...
  • Viscu
  • Viscu
  • 2017年03月22日 13:15
  • 108

【2017"百度之星"程序设计大赛 - 资格赛-1002度度熊的王国战略-并差集】

【链接】:http://bestcoder.hdu.edu.cn/contests/contest_show.php?cid=774 【题目】: 度度熊的王国战略    Accep...

2017"百度之星"程序设计大赛 - 资格赛-1002度度熊的王国战略

标题很长很吓人,以我本人的能力,只能水一水,看大佬们AK... 这次资格赛状况连连,在许多ACM群里纷纷吐槽,例如1004题意不明确,1002数据太弱,1001??? 到了第二天才水过1002,惭愧惭...

2017"百度之星"程序设计大赛 - 资格赛:1002 度度熊的王国战略

题目: Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族。 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士。 所以这一场战争...

2017"百度之星"程序设计大赛-资格赛-1002-度度熊的王国战略

ACM模版描述题解其实这个题简单的有些让人不敢写,因为资格赛应该是没有签到题的……一直怀疑自己是不是读错题了,或者没有搞懂它真正的意图。其实就是判断一下连通性,一个并查集就好了,如果一开始就没有联通,...
  • f_zyj
  • f_zyj
  • 2017年08月07日 14:53
  • 337

2017 百度之星资格赛1002 度度熊的王国战略【图+贪心】

题面:度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族。哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士。所以这一场战争,将会十分艰难。为了更好的进攻哗啦啦族,度度熊决定首先应该从内...
  • SCaryon
  • SCaryon
  • 2017年08月07日 19:01
  • 164

hdu 5883 The Best Path 欧拉路径 & 欧拉回路 并查集

题意:给出一个无向图,问是否存在欧拉路(一笔画),问经过最大的顶点异或和 思路:这题完全是考察欧拉路的性质,所以先来回顾下欧拉路的性质 对于一个图是否存在欧拉路,首先要判断它的连通性,判断...

hdoj 1856 More is better 【并查集 求最大节点数】

More is better Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 327680/102400 K (Java/Others)...

POJ2985 (线段树+并查集)

题目链接:http://poj.org/problem?id=2985 题意:输入n(猫的数量)和m(操作的总数),求分组以及合并操作后,第K大的组的规模大小 解题思路:并查集+线段树 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 6109 百度之星2017 1002 数据分割(并查集+set)
举报原因:
原因补充:

(最多只允许输入30个字)