Introduction to Optimization(四): 拟牛顿法

本文介绍了优化方法中的拟牛顿法,特别是DFP和BFGS算法。讨论了Hessian矩阵的近似,以及这两种算法的迭代过程和正定性证明。BFGS算法由于避免了DFP的一些问题,实践中更常被使用。通过代码实现和实验比较,展示了在Rosen函数下,BFGS和DFP相对于共轭梯度法的优势,尽管二阶优化方法的空间复杂度较高,限制了其在高维数据中的应用。
摘要由CSDN通过智能技术生成

本节介绍:

  • hessian matrix 近似
  • DFP算法
  • bfgs算法

hessian matrix 近似

牛顿法的基本思路是用二次函数来局部逼近目标函数 f 并解近似函数的极小点作为下一个迭代点,迭代公式

xxk+1=xxkαFF1(xxk)gk

但是牛顿法的缺陷是需要计算hessian矩阵,及其逆矩阵,但是实际上我们如果能保证 f(xk+1)<f(xk) , 就ok了,即我们想找到一个类似 F1 的矩阵 Hk ,使得迭代点

xxk+1=xxkαHHkgkf(xk+1)<f(xk)

xxk+1 出对 f(xk+1) 一阶泰勒展开
f(xxk+1)=f(xk)+gTk(xk+1xk)+o(||xk+1xk||)=f(xk)αgTk
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值